5 research outputs found
The Iron Chelator Pyridoxal Isonicotinoyl Hydrazone Inhibits Mitochondrial Lipid Peroxidation Induced By Fe(ii)-citrate
Pyridoxal isonicotinoyl hydrazone (PIH) is able to prevent iron-mediated hydroxyl radical formation by means of iron chelation and inhibition of redox cycling of the metal. In this study, we investigated the effect of PIH on Fe(II)-citrate-mediated lipid peroxidation and damage to isolated rat liver mitochondria. Lipid peroxidation was quantified by the production of thiobarbituric acid-reactive substances (TBARS) and by antimycin A-insensitive oxygen consumption. PIH at 300 μM induced full protection against 50 μM Fe(II)-citrate-induced loss of mitochondrial transmembrane potential (Δψ) and mitochondrial swelling. In addition, PIH prevented the Fe(II)-citrate-dependent formation of TBARS and antimycin A-insensitive oxygen consumption. The antioxidant effectiveness of 100 μM PIH (on TBARS formation and mitochondrial swelling) was greater in the presence of 20 or 50 μM Fe(II)-citrate than in the presence of 100 μM Fe(II)-citrate, suggesting that the mechanism of PIH antioxidant action is linked with its Fe(II) chelating property. Finally, PIH increased the rate of Fe(II) autoxidation by sequestering iron from the Fe(II)-citrate complex, forming a Fe(III)-PIH 2 complex that does not participate in Fenton-type reactions and lipid peroxidation. These results are of pharmacological relevance since PIH is a potential candidate for chelation therapy in diseases related to abnormal intracellular iron distribution and/or iron overload. © 2001 Elsevier Science B.V. All rights reserved.42813744Bhattacharya, M., Ponka, P., Hardy, P., Hanna, N., Varma, D.R., Lachapelle, P., Chemtob, S., Prevention of postasphyxia electroretinal dysfunction with a pyridoxal hydrazone (1997) Free Radical Biol. Med., 22, pp. 11-16Bindoli, A., Lipid peroxidation in mitochondria (1988) Free Radical Biol. Med., 5, pp. 247-261Britton, R.S., Bacon, B.R., Tavill, A.S., Mechanisms of iron toxicity (1994) Iron Metabolism in Health and Disease, pp. 311-351. , Brock, J.H., Halliday, J.W., Pippard, M.J., Powell, L.W. (Eds.). W.B. Saunders, LondonCadenas, E., Sies, H., The lag phase (1998) Free Radical. Res., 28, pp. 601-609Cardoso, S.M., Pereira, C., Oliveira, C.R., Mitochondrial function is differentially affected upon oxidative stress (1999) Free Radical Biol. Med., 26, pp. 3-13Carini, R., Parola, M., Dianzani, M.U., Albano, E., Mitochondrial damage and its role in causing hepatocyte injury during stimulation of lipid peroxidation by iron nitriloacetate (1992) Arch. Biochem. Biophys., 297, pp. 110-118Castilho, R.F., Meinicke, A.R., Almeida, A.M., Hermes-Lima, M., Vercesi, A.E., Oxidative damage of mitochondria induced by Fe(II)-citrate is potentiated by Ca 2+ and includes lipid peroxidation and alterations in membrane proteins (1994) Arch. Biochem. Biophys., 308, pp. 158-163Castilho, R.F., Meinicke, A.R., Vercesi, A.E., Hermes-Lima, M., The role of Fe(III) in Fe(II)-citrate-mediated peroxidation of mitochondrial membrane lipids (1999) Mol. Cell. Biochem., 196, pp. 163-168Friberg, H., Ferrand-Drake, M., Bengtsson, F., Halestrap, A.P., Wieloch, T., Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death (1998) J. Neurosci., 18, pp. 5151-5159Gassen, M., Youdim, M.B.H., The potential role of iron chelators in the treatment of Parkinson's disease and related neurological disorders (1997) Pharmacol. Toxicol., 80, pp. 159-166Gordon, N., Friedreich's ataxia and iron metabolism (2000) Brain Dev., 22, pp. 465-468Green, D.R., Reed, J.C., Mitochondria and apoptosis (1998) Science, 281, pp. 1309-1312Halliwell, B., Gutteridge, J.M.C., Antioxidant defences (1999) Free Radical in Biology and Medicine. 3rd edn., pp. 105-245. , Halliwell, B., Gutteridge, J.M.C. (Eds.). Oxford Univ. Press, Oxford, UKHermes-Lima, M., How do Ca 2+ and 5-aminolulinic acid-derived oxyradicals promote injury to isolated mitochondria? (1995) Free Radical Biol. Med., 19, pp. 381-390Hermes-Lima, M., Wang, E.M., Schulman, H.M., Storey, K.B., Ponka, P., Deoxyribose degradation catalyzed by Fe(III)EDTA: Kinetic aspects and potential usefulness for submicromolar iron measurements (1994) Mol. Cell. Biochem., 137, pp. 65-73Hermes-Lima, M., Castilho, R.F., Meinicke, A.R., Vercesi, A.E., Characteristics of Fe(II)ATP complex-induced damage to the rat liver mitochondria (1995) Mol. Cell. Biochem., 145, pp. 53-60Hermes-Lima, M., Nagy, E., Ponka, P., Schulman, H.M., The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) protects plasmid pUC-18 DNA against •OH-mediated strand breaks (1998) Free Radical Biol. Med., 25, pp. 875-880Hermes-Lima, M., Santos, N.C.F., Yan, J., Andrews, M., Schulman, H.M., Ponka, P., EPR spin trapping and 2-deoxyribose degradation studies of the effect of pyridoxal isonicotinoyl hydrazone (PIH) on •OH formation by the Fenton reaction (1999) Biochim. Biophys. Acta, 1426, pp. 475-482Hermes-Lima, M., Ponka, P., Schulman, H.M., The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and its analogues prevent damage to 2-deoxyribose mediated by ferric iron plus ascorbate (2000) Biochim. Biophys. Acta, 1523, pp. 154-160Hershko, C., Iron chelators (1994) Iron Metabolism in Health and Disease, pp. 391-426. , Brock, J.H., Halliday, J.W., Pippard, M.J., Powell, L.W. (Eds.). W.B. Saunders, LondonItoh, H., Shioda, T., Matsura, T., Koyama, S., Nakanishi, T., Kajiyama, G., Kawasaki, T., Iron ion induces mitochondrial DNA damage in HTC rat hepatoma cell culture: Role of antioxidants in mitochondrial DNA protection from oxidative stresses (1994) Arch. Biochem. Biophys., 313, pp. 120-125Jensen, B.D., Gunter, K.K., Gunter, T.E., The efficiencies of the component steps of oxidative phosphorylation: II. Experimental determination of the efficiencies in mitochondria and examination of the equivalence of membrane potential and pH gradient in phosphorylation (1986) Arch. Biochem. Biophys., 248, pp. 305-323Kachur, A.V., Tuttle, S.W., Biaglow, J.E., Autoxidation of ferrous ion complexes: A method for the generation of hydroxyl radicals (1998) Radiat. Res., 50, pp. 475-482Link, G., Konijn, A.M., Hershko, C., Cardioprotective effect of alpha-tocopherol, ascorbate, deferoxamine, and deferiprone: Mitochondrial function in cultured, iron-loaded heart cells (1999) J. Lab. Clin. Med., 133, pp. 179-188Meneghini, R., Iron homeostasis, oxidative stress, and DNA damage (1997) Free Radical Biol. Med., 23, pp. 783-792Minotti, G., Aust, S.D., An investigation into the mechanism of citrate-Fe 2+-dependent lipid peroxidation (1987) Free Radical Biol. Med., 3, pp. 379-387Nair, J., Carmichael, P.L., Fernando, R.C., Phillips, D.H., Strain, A.J., Bartsch, H., Lipid peroxidation-induced etheno-DNA adducts in the liver of patients with the genetic metal storage disorders Wilson's disease and primary hemochromatosis (1998) Cancer Epidemiol., Biomarkers Prev., 7, pp. 435-440Richardson, D.R., Milnes, K., The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents: II. The mechanism of action of ligands derived from salicylaldehyde benzoyl hydrazone and 2-hydroxy-1-naphthylaldehyde benzoyl hydrazone (1997) Blood, 89, pp. 3025-3038Richardson, D.R., Ponka, P., Development of iron chelators to treat iron overload disease and their use as experimental tools to probe intracellular iron metabolism (1998) Am. J. Hematol., 58, pp. 299-305Richardson, D.R., Ponka, P., Pyridoxal isonicotinoyl hydrazone and its analogues: Potential orally effective iron chelating agents for the treatment of iron overload disease (1998) J. Lab. Clin. Med., 131, pp. 306-314Santos, N.C.F., (1998) Quantificação da ação antioxidante do piridoxal isonicotinoil hidrazona (PIH) contra o estresse oxidativo induzido por Ãons ferro, , MSc Thesis, Universidade de Brasilia, BrazilSchulman, H.M., Hermes-Lima, M., Wang, E.M., Ponka, P., In vitro antioxidant properties of the iron chelator pyridoxal isonicotinoyl hydrazone and some of its analogs (1995) Redox Rep., 1, pp. 373-378Sheth, S., Brittenham, G.M., Genetic disorders affecting proteins of iron metabolism: Clinical implications (2000) Annu. Rev. Med., 51, pp. 443-464Smith, K.L., Kapoor, R., Felts, P.A., Demyelination: The role of reactive oxygen and nitrogen species (1999) Brain Pathol., 9, pp. 69-92Sookvanichsilp, N., Nakornchai, S., Weerapradist, W., Toxicological study of pyridoxal isonicotinoyl hydrazone: Acute and subchronic toxicity (1991) Drug Chem. Toxicol., 14, pp. 395-403Stal, P., Iron as a hepatotoxin (1995) Dig. Dis., 13, pp. 205-222Wallace, K.B., Starkov, A.A., Mitochondrial targets of drug toxicity (2000) Annu. Rev. Pharmacol. Toxicol., 40, pp. 353-388Webb, J., Vitolo, M.L., Pyridoxal isonicotinoyl hydrazone (PIH): A promising new iron chelator (1988) Birth Defects, Orig. Art. Ser., 23 (5 B), pp. 63-7
Characteristics Of Fe(ii)atp Complex-induced Damage To The Rat Liver Mitochondrial Membrane
It is well established that several iron complexes can induce oxidative damage in hepatic mitochondrial membranes by catalyzing the formation of · OH radicals and/or by promoting lipid peroxidation. This is a relevant process for the molecular basis of iron overload diseases. The present work demonstrates that Fe(II)ATP complexes (5-50 μM) promote an oxygen consumption burst in a suspension of isolated rat liver mitochondria (either in the absence or presence of Antimycin A), caused mainly by lipid peroxidation. Fe(II)ATP alone induced small levels of oxygen uptake but no burst. The time course of Fe(II)ATP oxidation to Fe(III)ATP in the extramitochondrial media also reveals a simultaneous 'burst phase'. The iron chelator Desferal (DFO) or the chain-break antioxidant butylated hydroxytoluene (BHT) fully prevented both lipid peroxidation (quantified as oxygen uptake burst) and mitochondrial swelling. DFO and BHT were capable of stopping the ongoing process of peroxidation at any point of their addition to the mitochondrial suspension. Conversely, DFO and BHT only halted the Fe(II)ATP-induced mitochondrial swelling at the onset of the process. Fe(II)ATP could also cause the collapse of mitochondrial potential, which was protected by BHT if added at the onset of the damaging process. These results, as well as correlation studies between peroxidation and mitochondrial swelling, suggest that a two phase process is occurring during Fe(II)ATP-induced mitochondrial damage: one dependent and another independent of lipid peroxidation. The involvement of lipid peroxidation in the overall process of mitochondrial membrane injury is discussed.1451536
The Role Of Reactive Oxygen Species In Mitochondrial Permeability Transition
We have provided evidence that mitochondrial membrane permeability transition induced by inorganic phosphate, uncouplers or prooxidants such as t-butyl hydroperoxide and diamide is caused by a Ca 2+-stimulated production of reactive oxygen species (ROS) by the respiratory chain, at the level of the coenzyme Q. The ROS attack to membrane protein thiols produces cross-linkage reactions, that may open membrane pores upon Ca 2+ binding. Studies with submitochondrial particles have demonstrated that the binding of Ca 2+ to these particles (possibly to cardiolipin) induces lipid lateral phase separation detected by electron paramagnetic resonance experiments exploying stearic acids spin labels. This condition leads to a disorganization of respiratory chain components, favoring ROS production and consequent protein and lipid oxidation.1714352Nicholls, D.G., Åkerman, K.E.O., (1982) Biochim. Biophys. Acta., 683, pp. 57-88Gunter, T.E., Pfeiffer, D.R., (1990) Am. J. Physiol., 258, pp. C755-C786Hunter, D.R., Haworth, R.A., Southard, J.H., (1976) J. Biol. Chem., 251, pp. 5069-5077Gunter, T.E., Gunter, K.K., Sheu, S.-S., Gavin, C.E., (1994) Am. J. Physiol., 267, pp. C313-C339Zoratti, M., Szabò, I., (1995) Biochim. Biophys. Acta, 1241, pp. 139-176Lehninger, A.L., Vercesi, A.E., Bababunmi, E.A., (1978) Proc. Natl. Acad. Sci. USA, 75, pp. 1690-1694Vercesi, A.E., Reynafarje, B., Lehninger, A.L., (1978) J. Biol. Chem., 253, pp. 6379-6385Bellomo, G., Jewell, S.A., Thor, H., Orrenius, S., (1982) Proc. Natl. Acad. Sci. USA, 79, pp. 6842-6846Sies, H., Graf, P., Estrela, J.M., (1981) Proc. Natl. Acad. Sci. USA, 78, pp. 3358-3362Richter, C., Frei, B., (1988) Free Radical Biol. Med., 4, pp. 365-375Crompton, M., Ellinger, H., Costi, A., (1988) Biochem. J., 255, pp. 357-360Broekemeier, K.M., Dempsey, M.E., Pfeiffer, D.R., (1989) J. Biol. Chem., 264, pp. 7826-7830Bernardi, P., (1992) J. Biol. Chem., 267, pp. 8334-8339Bernardi, P., Vassanelli, S., Veronese, P., Colonna, R., Szabó, I., Zoratti, M., (1992) J. Biol. Chem., 267, pp. 2934-2939Nazareth, W., Yafei, N., Crompton, M., (1991) J. Mol. Cell. Cardiol., 23, pp. 1351-1354Pastorino, J.G., Snyder, J.W., Serroni, A., Hoek, J.B., Farber, J.L., (1993) J. Biol. Chem., 268, pp. 13791-13798Brustovetsky, N.N., Egorova, M.V., Gnuton, D.Yu., (1993) Comp. Biochem. Physiol., 106 B, pp. 423-426Bernardi, P., Broekemeier, K.M., Pfeiffer, D.R., (1994) J. Bioenerg. Biomembr., 26, pp. 509-517Boveris, A., Oshino, N., Chance, B., (1972) Biochem. J., 128, pp. 617-630Cadenas, E., Boveris, A., Ragan, C.I., Stoppani, A.O.M., (1977) Arch. Biochem. Biophys., 180, pp. 248-257Dunford, H.B., (1987) Free Radical Biol. Med., 3, pp. 405-421Sutton, H.C., Winterbourn, C.C., (1989) Free Radical. Biol. Med., 6, pp. 53-60Halliwell, B., Gutteridge, J.M.C., (1989) Free Radicals in Biology and Medicine, , (B. Halliwell and J. M. C. Gutteridge, eds.) Oxford Univ. Press (Clarendon), OxfordVercesi, A.E., Hoffman, M.E., (1993) Methods in Toxicology. Mitochondrial Dysfunction, 2. , Chapter 21. (D. P. Jones, L. H. Lash, eds) Academic Press, New YorkRadi, R., Turrens, J.F., Chang, L.Y., Brush, K.M., Crapo, J.D., Freeman, B.A., (1991) J. Biol. Chem., 266, pp. 22028-22034Phung, C.D., Ezieme, J.A., Turrens, J.F., (1994) Arch. Biochem. Biophys., 315, pp. 479-482Cadenas, E., Boveris, A., (1980) Biochem. J., 188, pp. 31-37Grijalba, M.T., Vercesi, A.E., Schreier, S., (1996) XXV Annual Meeting of the Brazilian Society for Biochemistry and Molecular Biology, p. 151. , Caxambu, Mg, Brazil, May 4-7. Abstract P.4Castilho, R.F., Kowaltowski, A.J., Meinicke, A.R., Bechara, E.J.H., Vercesi, A.E., (1995) Free Radical Biol. Med., 18, pp. 479-486Lotscher, H.R., Winterhalter, K.H., Carafoli, E., Richter, C., (1979) Proc. Natl. Acad. Sci. USA, 76, pp. 4340-4344Beatrice, M.C., Stiers, D.L., Pfeiffer, D.R., (1984) J. Biol. Chem., 259, pp. 1279-1287Bernardes, C.F., Pereira-da-Silva, L., Vercesi, A.E., (1986) Biochim. Biophys. Acta., 850, pp. 41-48Vercesi, A.E., (1993) Braz. J. Med. Biol. Res., 26, pp. 441-457Valle, V.G.R., Fagian, M.M., Parentoni, L.S., Meinicke, A.R., Vercesi, A.E., (1993) Arch. Biochem. Biophys., 307, pp. 1-7Petronilli, V., Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., Bernardi, P., (1994) J. Biol. Chem., 269, pp. 16638-16642Carbonera, D., Angrilli, A., Azzone, G.F., (1988) Biochim. Biophys. Acta., 936, pp. 139-147Hermes-Lima, M., Valle, V.G.R., Vercesi, A.E., Bechara, E.J.H., (1991) Biochim. Biophys. Acta., 1056, pp. 57-63Vercesi, A.E., Castilho, R.F., Meinicke, A.R., Valle, V.G.R., Hermes-Lima, M., Bechara, E.J.H., (1994) Biochim. Biophys. Acta., 1188, pp. 201-206Inoue, T., Yoshida, Y., Nishimura, M., Kurosawwa, K., Tagawa, K., (1993) Biochim. Biophys. Acta., 1140, pp. 313-320Takeyama, N., Matsuo, N., Tanaka, T., (1993) Biochem. J., 294, pp. 719-725Tangeras, A., Flatmark, T., Bäckström, D., Ehrenberg, A., (1980) Biochim. Biophys. Acta, 589, pp. 162-175Merryfield, M.L., Lardy, H.A., (1982) J. Biol Chem., 257, pp. 3628-3635Biemond, P., Van Eijk, H.G., Swaak, A.J.G., Koster, J.F., (1984) J. Clin. Invest., 73, pp. 1576-1579Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., (1995) Am. J. Physiol., 269, pp. C141-C147Castilho, R.F., Lowaltowski, A.J., Meinicke, A.R., Vercesi, A.E., (1995) Free Radical Biol. Med., 18, pp. 55-59Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., (1996) FEBS Lett., 378, pp. 150-152Kowaltowski, A.J., Castilho, R.F., Grijalba, M.T., Bechara, E.J.H., Vercesi, A.E., (1996) J. Biol. Chem., 271, pp. 2929-2934Indig, G., Campa, A., Bechara, E.J.H., Cilento, G., (1988) Photochem. Photobiol., 48, pp. 719-723Nantes, I.L., Cilento, G., Bechara, E.J.H., Vercesi, A.E., (1995) Photochem. Photobiol., 62, pp. 522-527Cadenas, E., (1989) Annu. Rev. Biochem., 58, pp. 79-110Di Mascio, P., Catalani, L.H., Bechara, E.J.H., (1992) Free Radical Biol. Med., 12, pp. 471-478Bechara, E.J.H., Faria-Oliveira, O.M.M., Durán, N., Batista, R.C., Cilento, G., (1979) Photochem. Photobiol., 30, pp. 101-110Vercesi, A.E., (1987) Arch. Biochem. Biophys., 252, pp. 171-178Fagian, M.M., Pereira-da-Silva, L., Martins, I.S., Vercesi, A.E., (1990) J. Biol. Chem., 265, pp. 19955-19960Castilho, R.F., Kowaltowski, A.J., Vercesi, A.E., (1996) J. Bioenerg. Biomembr., 29. , in pressKowaltowski, A.J., Vercesi, A.E., Castilho, R.F., (1996) Biochim. Biophys. Acta., , in pressKligenberg, M., (1989) Arch. Biochem. Biophys., 270, pp. 1-14Majima, E., Shinohara, Y., Yamaguchi, N., Hong, Y., Terada, H., (1994) Biochemistry, 33, pp. 9530-9536Scherer, B., Kligenberg, M., (1974) Biochemistry, 13, pp. 161-169Vignais, P.V., Vignais, P.M., (1972) FEBS Lett, 26, pp. 27-31Novgorodov, S.A., Gudz, T.I., Brierley, G.P., Pfeiffer, D.R., (1994) Arch. Biochem. Biophys., 311, pp. 219-228Bernardes, C.F., Meyer-Fernandes, J.R., Basseres, D.S., Castilho, R.F., Vercesi, A.E., (1994) Biochim. Biophys. Acta., 1188, pp. 93-100Richter, C., Gogvadze, V., Laffranchi, R., Schlapbach, R., Schweizer, M., Suter, M., Walter, P., Yaffee, M., (1995) Biochim. Biophys. Acta, 1271, pp. 67-74Vercesi, A.E., (1984) Arch. Biochem. Biophys., 231, pp. 86-91Al-Nasser, I., Crompton, M., (1986) Biochem. J., 239, pp. 19-29Crompton, M., Costi, A., Hayat, L., (1987) Biochem. J., 245, pp. 915-918Castilho, R.F., Meinicke, A.R., Almeida, A.M., Hermes-Lima, M., Vercesi, A.E., (1994) Arch. Biochem. Biophys., 308, pp. 158-163Hermes-Lima, M., Castilho, R.F., Meinicke, A.R., Vercesi, A.E., (1995) Mol. Cell. Biochem., 145, pp. 53-60Reed, K.C., Bygrave, F.L., (1974) Biochem. J., 140, pp. 143-155Vercesi, A.E., Ferraz, V.L., Macedo, D.V., Fiskum, G., (1988) Biochem. Biophys. Res. Commun., 154, pp. 934-941Bernardi, P., Veronese, P., Petronilli, V., (1993) J. Biol. Chem., 268, pp. 1005-1010Bernardi, P., Petronilli, V., (1996) J. Bioenerg. Biomembr., 28, pp. 131-138Igbavboa, U., Zwizinski, C.W., Pfeiffer, D.R., (1989) Biochem. Biophys. Res. Commun., 161, pp. 619-625Griffiths, E., Halestrap, A.P., (1995) Biochem. J., 307, pp. 93-9
Effect Of Membrane Surface Charge And Salt On Ionophore Partitioning And Antiperoxidative Activity
We have previously shown that the ionophores lasalocid LAS), nigericin and monensin act as radical scavengers, inhibiting lipid peroxidation in mitochondria and in egg phosphatidylcholine (PC) liposomes containing negatively charged lipids and KCL as osmotic support. When tile osmotic support is sucrose, all ionophores failed to inhibit peroxidation. Here we analyse the kinetics of LAS membrane incorporation, a fundamental step for protection against lipid peroxidation. Despite the electrostatic repulsion, in the presence of KCI. the incorporation of tile anionic form (capable of complexing cations) is higher in negatively charged than in PC liposomes. Longer incubation times of LAS with PC liposomes increased ionophore incorporation, as attested by: i ) values of order parameter obtained from EPR spectra of lipid spin labels, ii) protection against lipid peroxidation (monitored by TBARS and conjugated diene), iii) LAS fluorescence and CD spectra. Sucrose prevents ionophore incorporation in both membrane systems. We conclude that the incorporation is characterized by a strong dependence on lipid charge, ionic compounds in the medium, and incubation time. Negatively charged membranes enhance the incorporation of LAS by increasing cation concentration at the interface, facilitating complexation, the limiting step of the process.11
Thapsigargin Causes Ca2+ Release And Collapse Of The Membrane Potential Of Trypanosoma Brucei Mitochondria In Situ And Of Isolated Rat Liver Mitochondria
Thapsigargin, previously reported to release Ca2+ from non-mitochondrial stores of different cell types, as well as nigericin, were found, when used at high concentrations, to release Ca2+ and collapse the membrane potential of Trypanosoma brucei bloodstream and procyclic trypomastigotes mitochondria in situ. At similarly high concentrations (>10 μM), thapsigargin was also found to release Ca2+ and collapse the membrane potential of isolated rat liver mitochondria. These results indicate that care should be taken when attributing the effects of thapsigargin in intact cells to the specific inhibition of the sarcoplasmic and endoplasmic reticulum Ca2+-ATPase family of calcium pumps. In addition, we have found no evidence for an increase in intracellular Ca2+ by release of the ion from intracellular stores by nigericin, measuring changes in cytosolic Ca2+ by dual wavelength spectrofluorometry in fura-2-loaded T. brucei bloodstream trypomastigotes or measuring Ca2+ transport in digitonin-permeabilized cells.268128564856