452 research outputs found
SUSY-QCD corrections to stop annihilation into electroweak final states including Coulomb enhancement effects
We present the full supersymmetric QCD corrections
for stop-anti-stop annihilation into electroweak final states within the
Minimal Supersymmetric Standard Model (MSSM). We also incorporate Coulomb
corrections due to gluon exchange between the incoming stops. Numerical results
for the annihilation cross sections and the predicted neutralino relic density
are presented. We show that the impact of the radiative corrections on the
cosmologically preferred region of the parameter space can become larger than
the current experimental uncertainty, shifting the relic bands within the
considered regions of the parameter space by up to a few tens of GeV.Comment: 20 pages, 13 figures, updated to version published in Phys. Rev.
One-loop corrections to gaugino (co-)annihilation into quarks in the MSSM
We present the full supersymmetric QCD corrections
for gaugino annihilation and co-annihilation into light and heavy quarks in the
Minimal Supersymmetric Standard Model (MSSM). We demonstrate that these
channels are phenomenologically relevant within the so-called phenomenological
MSSM. We discuss selected technical details such as the dipole subtraction
method in the case of light quarks and the treatment of the bottom quark mass
and Yukawa coupling. Numerical results for the (co-)annihilation cross sections
and the predicted neutralino relic density are presented. We show that the
impact of including the radiative corrections on the cosmologically preferred
region of the parameter space is larger than the current experimental
uncertainty from Planck data.Comment: 19 pages, 9 figures. Matches version published in Phys.Rev.
Precision predictions for supersymmetric dark matter
The dark matter relic density has been measured by Planck and its
predecessors with an accuracy of about 2%. We present theoretical calculations
with the numerical program DM@NLO in next-to-leading order SUSY QCD and beyond,
which allow to reach this precision for gaugino and squark (co-)annihilations,
and use them to scan the phenomenological MSSM for viable regions, applying
also low-energy, electroweak and hadron collider constraints.Comment: 6 pages, 1 table, 8 figures, proceedings of ICHEP 201
Developing students as global learners: “Groups in Our World” blog
This case study investigates the use of online blogs as a teaching tool. A collaborative blog was implemented in parallel classes on group processes in the United States and Germany. Our goal was to connect American and German graduate students by helping them to talk about group communication and meeting behaviors. Collected data included transcripts of the messages, as well as students' evaluations of the blog (collected at the end of the project). Quantitative analyses assessed students' participation rates and the content of their postings. Qualitative analysis examined the use of the blog as a teaching and learning tool. The results showed that students interacted more on the blog than was required by the instructor. Students valued blogging as a new learning experience. We discuss the pedagogical implications of blog usage for teaching about groups and provide recommendations for instructors interested in using blogs in their own courses. © The Author(s) 2013
Coherent Time Evolution and Boundary Conditions of Two-Photon Quantum Walks
Multi-photon quantum walks in integrated optics are an attractive controlled
quantum system, that can mimic less readily accessible quantum systems and
exhibit behavior that cannot in general be accurately replicated by classical
light without an exponential overhead in resources. The ability to observe time
evolution of such systems is important for characterising multi-particle
quantum dynamics---notably this includes the effects of boundary conditions for
walks in spaces of finite size. Here we demonstrate the coherent evolution of
quantum walks of two indistinguishable photons using planar arrays of 21
evanescently coupled waveguides fabricated in silicon oxynitride technology. We
compare three time evolutions, that follow closely a model assuming unitary
evolution, corresponding to three different lengths of the array---in each case
we observe quantum interference features that violate classical predictions.
The longest array includes reflecting boundary conditions.Comment: 7 pages,7 figure
SPoC: A novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters
Previously, modulations in power of neuronal oscillations have been functionally linked to sensory, motor and cognitive operations. Such links are commonly established by relating the power modulations to specific target variables such as reaction times or task ratings. Consequently, the resulting spatio-spectral representation is subjected to neurophysiological interpretation. As an alternative, independent component analysis (ICA) or alternative decomposition methods can be applied and the power of the components may be related to the target variable. In this paper we show that these standard approaches are suboptimal as the first does not take into account the superposition of many sources due to volume conduction, while the second is unable to exploit available information about the target variable. To improve upon these approaches we introduce a novel (supervised) source separation framework called Source Power Comodulation (SPoC). SPoC makes use of the target variable in the decomposition process in order to give preference to components whose power comodulates with the target variable. We present two algorithms that implement the SPoC approach. Using simulations with a realistic head model, we show that the SPoC algorithms are able extract neuronal components exhibiting high correlation of power with the target variable. In this task, the SPoC algorithms outperform other commonly used techniques that are based on the sensor data or ICA approaches. Furthermore, using real electroencephalography (EEG) recordings during an auditory steady state paradigm, we demonstrate the utility of the SPoC algorithms by extracting neuronal components exhibiting high correlation of power with the intensity of the auditory input. Taking into account the results of the simulations and real EEG recordings, we conclude that SPoC represents an adequate approach for the optimal extraction of neuronal components showing coupling of power with continuously changing behaviorally relevant parameters
The nonrelativistic limit of the Majorana equation and its simulation in trapped ions
We analyze the Majorana equation in the limit where the particle is at rest.
We show that several counterintuitive features, absent in the rest limit of the
Dirac equation, do appear. Among them, Dirac-like positive energy solutions
that turn into negative energy ones by free evolution, or nonstandard
oscillations and interference between real and imaginary spinor components for
complex solutions. We also study the ultrarelativistic limit, showing that the
Majorana and Dirac equations mutually converge. Furthermore, we propose a
physical implementation in trapped ions.Comment: 7 pages, 1 figure. Proceedings of 18th Central European Workshop on
Quantum Optics (CEWQO 2011), Madrid, Spai
High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels
We report a novel and simple approach for generating near-perfect quality
polarization entanglement in a fully guided-wave fashion. Both deterministic
pair separation into two adjacent telecommunication channels and the paired
photons' temporal walk-off compensation are achieved using standard fiber
components. Two-photon interference experiments are performed, both for
quantitatively demonstrating the relevance of our approach, and for
manipulating the produced state between bosonic and fermionic symmetries. The
compactness, versatility, and reliability of this configuration makes it a
potential candidate for quantum communication applications.Comment: 6 figure
Universality of local weak interactions and its application for interferometric alignment
The modification of the effect of interactions of a particle as a function of
its pre- and postselected states is analyzed theoretically and experimentally.
The universality property of this modification in the case of local
interactions of a spatially pre- and postselected particle has been found. It
allowed to define an operational approach for characterization of the presence
of a quantum particle in a particular place: the way it modifies the effect of
local interactions. The experiment demonstrating this universality property
provides an efficient interferometric alignment method, in which the beam on a
single detector throughout one phase scan yields all misalignment parameters.Comment: 12 pages, 7 figure
- …