79 research outputs found

    Reply to: Hypoxia treatment of Parkinson’s disease may disrupt the circadian system

    Get PDF
    Background Introduction In recent years, increasing attention has been given to hypoxia-based treatment for persons with neurodegenerative and mitochondrial disease, as reflected by the significant rise in publications from basic [1], preclinical [2] and clinical [3, 4] research groups. Hypoxia treatment is based on the idea of hypoxic conditioning and adaptations induced by hypoxia. Recently, we published a protocol paper to assess the safety, feasibility, and acute symptomatic effects of single sessions of continuous and intermittent hypoxia (for 45 min, at FiO2 0.133 and 0.163) in persons with Parkinson’s disease (PD) [3]. In Coste & Touitou’s recent correspondence [5] to our protocol [6], they highlighted the potential for circadian rhythm disturbances induced by hypoxia in PD. This interesting insight is based on their two different studies, in which a phase shift in circadian rhythm (as measured by cortisol and melatonin) was observed after eight-hours-long ‘chronic’ exposure to hypoxia [7, 8]. Coste & Touitou [6] carefully considered that hypoxia-based interventions could therefore induce changes in circadian rhythm, and this may in turn affect the outcome of these interventions. Here, we discuss important differences between chronic hypoxia, which resembles hypoxia as a disease model for sleep apnea, and hypoxic conditioning

    Randomized controlled trial of intermittent hypoxia in Parkinson’s disease: study rationale and protocol

    Get PDF
    Background Parkinson’s disease (PD) is a neurodegenerative disease for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that repeated exposure to intermittent hypoxia might have short- and long-term benefits in PD. In a previous exploratory phase I trial, we demonstrated that in-clinic intermittent hypoxia exposure is safe and feasible with short-term symptomatic effects on PD symptoms. The current study aims to explore the safety, tolerability, feasibility, and net symptomatic effects of a four-week intermittent hypoxia protocol, administered at home, in individuals with PD. Methods/Design: This is a two-armed double-blinded randomized controlled trial involving 40 individuals with mild to moderate PD. Participants will receive 45 min of normobaric intermittent hypoxia (fraction of inspired oxygen 0.16 for 5 min interspersed with 5 min normoxia), 3 times a week for 4 weeks. Co-primary endpoints include nature and total number of adverse events, and a feasibility-tolerability questionnaire. Secondary endpoints include Movement Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part II and III scores, gait tests and biomarkers indicative of hypoxic dose and neuroprotective pathway induction. Discussion This trial builds on the previous phase I trial and aims to investigate the safety, tolerability, feasibility, and net symptomatic effects of intermittent hypoxia in individuals with PD. Additionally, the study aims to explore induction of relevant neuroprotective pathways as measured in plasma. The results of this trial could provide further insight into the potential of hypoxia-based therapy as a novel treatment approach for PD

    Wall shear stress as measured in vivo: consequences for the design of the arterial system

    Get PDF
    Based upon theory, wall shear stress (WSS), an important determinant of endothelial function and gene expression, has been assumed to be constant along the arterial tree and the same in a particular artery across species. In vivo measurements of WSS, however, have shown that these assumptions are far from valid. In this survey we will discuss the assessment of WSS in the arterial system in vivo and present the results obtained in large arteries and arterioles. In vivo WSS can be estimated from wall shear rate, as derived from non-invasively recorded velocity profiles, and whole blood viscosity in large arteries and plasma viscosity in arterioles, avoiding theoretical assumptions. In large arteries velocity profiles can be recorded by means of a specially designed ultrasound system and in arterioles via optical techniques using fluorescent flow velocity tracers. It is shown that in humans mean WSS is substantially higher in the carotid artery (1.1–1.3 Pa) than in the brachial (0.4–0.5 Pa) and femoral (0.3–0.5 Pa) arteries. Also in animals mean WSS varies substantially along the arterial tree. Mean WSS in arterioles varies between about 1.0 and 5.0 Pa in the various studies and is dependent on the site of measurement in these vessels. Across species mean WSS in a particular artery decreases linearly with body mass, e.g., in the infra-renal aorta from 8.8 Pa in mice to 0.5 Pa in humans. The observation that mean WSS is far from constant along the arterial tree implies that Murray’s cube law on flow-diameter relations cannot be applied to the whole arterial system. Because blood flow velocity is not constant along the arterial tree either, a square law also does not hold. The exponent in the power law likely varies along the arterial system, probably from 2 in large arteries near the heart to 3 in arterioles. The in vivo findings also imply that in in vitro studies no average shear stress value can be taken to study effects on endothelial cells derived from different vascular areas or from the same artery in different species. The cells have to be studied under the shear stress conditions they are exposed to in real life

    Tissue Doppler imaging of carotid plaque wall motion: a pilot study

    Get PDF
    BACKGROUND: Studies suggest the physical and mechanical properties of vessel walls and plaque may be of clinical value in the diagnosis and treatment of cardiovascular atherosclerotic disease. The purpose of this pilot study was to investigate the potential clinical application of ultrasound Tissue Doppler Imaging (TDI) of Arterial Wall Motion (AWM) and to quantify simple wall motion indices in normal and diseased carotid arteries. METHODS: 224 normal and diseased carotid arteries (0–100% stenoses) were imaged in 126 patients (age 25–88 years, mean 68 ± 11). Longitudinal sections of the carotid bifurcation were imaged using a Philips HDI5000 scanner and L12-5 probe under optimized TDI settings. Temporal and spatial AWMs were analyzed to evaluate the vessel wall displacements and spatial gradients at peak systole averaged over 5 cardiac cycles. RESULTS: AWM data were successfully extracted in 91% of cases. Within the carotid bifurcation/plaque region, the maximum wall dilation at peak systole ranged from -100 to 750 microns, mean 335 ± 138 microns. Maximum wall dilation spatial gradients ranged 0–0.49, mean 0.14 ± 0.08. The AWM parameters showed a wide variation and had poor correlation with stenoses severity. Case studies illustrated a variety of pertinent qualitative and quantitative wall motion features related to the biophysics of arterial disease. CONCLUSION: Our clinical experience, using a challenging but realistic imaging protocol, suggests the use of simple quantitative AWM measures may have limitations due to high variability. Despite this, pertinent features of AWM in normal and diseased arteries demonstrate the potential clinical benefit of the biomechanical information provided by TDI

    Infrared thermography for convective heat transfer measurements

    Get PDF

    INFLUENCE OF IONIC-STRENGTH AND SHEAR RATE ON THE DESORPTION OF POLYSTYRENE PARTICLES FROM A GLASS COLLECTOR AS STUDIED IN A PARALLEL-PLATE FLOW CHAMBER

    No full text
    The residence-time-dependent desorption during the deposition of polystyrene particles 736 nm in diameter on glass was studied in situ using a parallel-plate flow chamber and automated image analysis. Comparison of successively grabbed images yielded the initial desorption rate coefficient, and final desorption rate coefficient and a relaxation time for the transition from the initial to the final desorption state, i.e. ageing of the bonds. Desorption experiments were performed from suspensions with different potassium nitrate concentrations (1, 10 and 50 mM) and at varying shear rates (15-200 s-1). The initial desorption rate coefficient beta0, ranging from 1 x 10(-3) to 20 x 10(-3) s-1, and the final desorption rate coefficient beta(infinity), ranging from 0.01 x 10(-3) to 0.65 x 10(-3) s-1 were both larger than the desorption rate coefficients calculated neglecting a possible residence time dependence. These desorption rate coefficients, beta, ranged from 0.005 x 10(-3) to 0.40 x 10(-3) s-1. The relaxation times, at which the adhesion of the polystyrene particles entered a more irreversible state of adhesion compared with their initial state of adhesion, varied from 100 to 1000s. The desorption rate coefficients as well as the relaxation time showed major variations with the shear rate and the ionic strength of the suspension. At high ionic strength, the initial and final desorption rate coefficients increase and the relaxation time decreases with increasing shear rate, whereas at low ionic strength the desorption rates decrease and the relaxation time increases with increasing ionic strength. This study provides direct evidence that the interaction forces between adhering particles and a collector surface change over time
    corecore