251 research outputs found

    Is sequential cranial ultrasound reliable for detection of white matter injury in very preterm infants?

    Get PDF
    Cranial ultrasound (cUS) may not be reliable for detection of diffuse white matter (WM) injury. Our aim was to assess in very preterm infants the reliability of a classification system for WM injury on sequential cUS throughout the neonatal period, using magnetic resonance imaging (MRI) as reference standard. In 110 very preterm infants (gestational age < 32 weeks), serial cUS during admission (median 8, range 4-22) and again around term equivalent age (TEA) and a single MRI around TEA were performed. cUS during admission were assessed for presence of WM changes, and contemporaneous cUS and MRI around TEA additionally for abnormality of lateral ventricles. Sequential cUS (from birth up to TEA) and MRI were classified as normal/mildly abnormal, moderately abnormal, or severely abnormal, based on a combination of findings of the WM and lateral ventricles. Predictive values of the cUS classification were calculated. Sequential cUS were classified as normal/mildly abnormal, moderately abnormal, and severely abnormal in, respectively, 22%, 65%, and 13% of infants and MRI in, respectively, 30%, 52%, and 18%. The positive predictive value of the cUS classification for the MRI classification was high for severely abnormal WM (0.79) but lower for normal/mildly abnormal (0.67) and moderately abnormal (0.64) WM. Sequential cUS during the neonatal period detects severely abnormal WM in very preterm infants but is less reliable for mildly and moderately abnormal WM. MRI around TEA seems needed to reliably detect WM injury in very preterm infants.Epidemiology in Pediatrics and Child Healt

    Al-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation

    Get PDF
    Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2), synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities

    Improved neonatal brain MRI segmentation by interpolation of motion corrupted slices

    Get PDF
    BACKGROUND AND PURPOSE: To apply and evaluate an intensity‐based interpolation technique, enabling segmentation of motion‐affected neonatal brain MRI. METHODS: Moderate‐late preterm infants were enrolled in a prospective cohort study (Brain Imaging in Moderate‐late Preterm infants “BIMP‐study”) between August 2017 and November 2019. T2‐weighted MRI was performed around term equivalent age on a 3T MRI. Scans without motion (n = 27 [24%], control group) and with moderate‐severe motion (n = 33 [29%]) were included. Motion‐affected slices were re‐estimated using intensity‐based shape‐preserving cubic spline interpolation, and automatically segmented in eight structures. Quality of interpolation and segmentation was visually assessed for errors after interpolation. Reliability was tested using interpolated control group scans (18/54 axial slices). Structural similarity index (SSIM) was used to compare T2‐weighted scans, and Sørensen‐Dice was used to compare segmentation before and after interpolation. Finally, volumes of brain structures of the control group were used assessing sensitivity (absolute mean fraction difference) and bias (confidence interval of mean difference). RESULTS: Visually, segmentation of 25 scans (22%) with motion artifacts improved with interpolation, while segmentation of eight scans (7%) with adjacent motion‐affected slices did not improve. Average SSIM was .895 and Sørensen‐Dice coefficients ranged between .87 and .97. Absolute mean fraction difference was ≤0.17 for less than or equal to five interpolated slices. Confidence intervals revealed a small bias for cortical gray matter (0.14‐3.07 cm(3)), cerebrospinal fluid (0.39‐1.65 cm(3)), deep gray matter (0.74‐1.01 cm(3)), and brainstem volumes (0.07‐0.28 cm(3)) and a negative bias in white matter volumes (–4.47 to –1.65 cm(3)). CONCLUSION: According to qualitative and quantitative assessment, intensity‐based interpolation reduced the percentage of discarded scans from 29% to 7%

    Tractography of developing white matter of the internal capsule and corpus callosum in very preterm infants

    Get PDF
    To investigate in preterm infants associations between Diffusion Tensor Imaging (DTI) parameters of the posterior limb of the internal capsule (PLIC) and corpus callosum (CC) and age, white matter (WM) injury and clinical factors. In 84 preterm infants DTI was performed between 40-62 weeks postmenstrual age on 3 T MR. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) values and fibre lengths through the PLIC and the genu and splenium were determined. WM injury was categorised as normal/mildly, moderately and severely abnormal. Associations between DTI parameters and age, WM injury and clinical factors were analysed. A positive association existed between FA and age at imaging for fibres through the PLIC (r = 0.48 p < 0.001) and splenium (r = 0.24 p < 0.01). A negative association existed between ADC and age at imaging for fibres through the PLIC (r = -0.65 p < 0.001), splenium (r = -0.35 p < 0.001) and genu (r = -0.53 p < 0.001). No association was found between DTI parameters and gestational age, degree of WM injury or categorical clinical factors. These results indicate that in our cohort of very preterm infants, at this young age, the development of the PLIC and CC is ongoing and independent of the degree of prematurity or WM injury.Neuro Imaging Researc

    Improved segmentation of neonatal brain MRI scans by addressing motion artifacts with data interpolation

    Get PDF
    negatively affect segmentation. The purpose of this study was to investigate whether motion-affected slices can be replaced by interpolated slices to enhance segmentation of neonatal brain MRI scans. METHODS: From August 2017 to November 2019, moderate-late preterm infants were enrolled in a prospective cohort study entitled Brain Imaging in Moderate-late Preterm infants (BIMP-study). Around term equivalent age, MRI of the brain was performed using a 3 Tesla MRI. T2-weighed (voxel size 0.35x0.35x2mm) transverse images were automatically segmented into eight brain structures with a neonatal segmentation toolbox [1]. Upon visual inspection, scans with motion artifacts that affected segmentation (25/112; motion group) and scans without motion artifacts (27/112; control group) were selected and used for analysis. Slices with motion artifacts were re-estimated using shape-preserving cubic spline interpolation [2, 3], followed by automatic segmentation of the interpolated scan. Analysis was performed in three stages. Firstly, scans from the control group were used to test interpolation reliability: 18/54 axial slices of these scans were interpolated. Segmentation results of uninterpolated and interpolated scans were compared using the Sørensen-Dice coefficient. Secondly, uninterpolated and interpolated volumes of the motion group were compared using the Wilcoxon Signed-Ranks test. Thirdly, interpolated volumes of the motion group were compared to uninterpolated volumes of the control group using the Mann-Whitney U test. RESULTS: In the control group, Sørensen-Dice coefficients ranged between 0.87 and 0.97. In the motion group, interpolation resulted in a significant decrease of cortical (Z=-2.9, p=0.004) and deep gray matter (Z=-3.30, p<0.001), and a significant increase of white matter (Z=2.84, p=0.005) volumes. No significant differences were found between interpolated volumes of the motion group and uninterpolated volumes of the control group. CONCLUSION: Shape preserving cubic spline interpolation enables reliable segmentation of motion-affected MRI scans in moderate-late preterm infants

    The ACA training programme to improve communication between general practitioners and their palliative care patients: development and applicability

    Get PDF
    <p>Abstract</p> <p>We describe the development of a new training programme on GP-patient communication in palliative care, and the applicability to GPs and GP Trainees. This ‘ACA training programme’ focuses on <b> <it>A</it> </b><it>vailability</it> of the GP for the patient, <b> <it>C</it> </b><it>urrent issues</it> that should be raised by the GP, and <b> <it>A</it> </b><it>nticipating</it> various scenarios. Evaluation results indicate the ACA training programme to be applicable to GPs and GP Trainees. The ACA checklist was appreciated by GPs as useful both in practice and as a learning tool, whereas GP Trainees mainly appreciated the list for use in practice.</p

    Deeply Inverted Electron-Hole Recombination in a Luminescent Antibody-Stilbene Complex

    Get PDF
    The blue-emissive antibody EP2-19G2 that has been elicited against trans-stilbene has unprecedented ability to produce bright luminescence and has been used as a biosensor in various applications. We show that the prolonged luminescence is not stilbene fluorescence. Instead, the emissive species is a charge-transfer excited complex of an anionic stilbene and a cationic, parallel π-stacked tryptophan. Upon charge recombination, this complex generates exceptionally bright blue light. Complex formation is enabled by a deeply penetrating ligand-binding pocket, which in turn results from a noncanonical interface between the two variable domains of the antibody
    corecore