215 research outputs found

    Introducing Computer-Based Testing in High-Stakes Exams in Higher Education:Results of a Field Experiment

    Get PDF
    The introduction of computer-based testing in high-stakes examining in higher education is developing rather slowly due to institutional barriers (the need of extra facilities, ensuring test security) and teacher and student acceptance. From the existing literature it is unclear whether computer-based exams will result in similar results as paper-based exams and whether student acceptance can change as a result of administering computer-based exams. In this study, we compared results from a computer-based and paper-based exam in a sample of psychology students and found no differences in total scores across the two modes. Furthermore, we investigated student acceptance and change in acceptance of computer-based examining. After taking the computer-based exam, fifty percent of the students preferred paper-and-pencil exams over computer-based exams and about a quarter preferred a computer-based exam. We conclude that computer-based exam total scores are similar as paper-based exam scores, but that for the acceptance of high-stakes computer-based exams it is important that students practice and get familiar with this new mode of test administration

    The relationship between white matter microstructure, cardiovascular fitness, gross motor skills, and neurocognitive functioning in children

    Get PDF
    Recent evidence indicates that both cardiovascular fitness and gross motor skill performance are related to enhanced neurocognitive functioning in children by influencing brain structure and functioning. This study investigates the role of white matter microstructure in the relationship of both cardiovascular fitness and gross motor skills with neurocognitive functioning in healthy children. In total 92 children (mean age 9.1 years, range 8.0–10.7) were included in this study. Cardiovascular fitness and gross motor skill performance were assessed using performance‐based tests. Neurocognitive functioning was assessed using computerized tests (working memory, inhibition, interference control, information processing, and attention). Diffusion tensor imaging was used in combination with tract‐based spatial statistics to assess white matter microstructure as defined by fractional anisotropy (FA), axial and radial diffusivity (AD, RD). The results revealed positive associations of both cardiovascular fitness and gross motor skills with neurocognitive functioning. Information processing and motor response inhibition were associated with FA in a cluster located in the corpus callosum. Within this cluster, higher cardiovascular fitness and better gross motor skills were both associated with greater FA, greater AD, and lower RD. No mediating role was found for FA in the relationship of both cardiovascular fitness and gross motor skills with neurocognitive functioning. The results indicate that cardiovascular fitness and gross motor skills are related to neurocognitive functioning as well as white matter microstructure in children. However, this study provides no evidence for a mediating role of white matter microstructure in these relationships

    Effects of aerobic versus cognitively demanding exercise interventions on brain structure and function in healthy children:Results from a cluster randomized controlled trial

    Get PDF
    The beneficial effects of physical activity on neurocognitive functioning in children are considered to be facilitated by physical activity-induced changes in brain structure and functioning. In this study, we examined the effects of two 14-week school-based exercise interventions in healthy children on white matter microstructure and brain activity in resting-state networks (RSNs) and whether changes in white matter microstructure and RSN activity mediate the effects of the exercise interventions on neurocognitive functioning. A total of 93 children were included in this study (51% girls, mean age 9.13 years). The exercise interventions consisted of four physical education lessons per week, focusing on either aerobic or cognitively demanding exercise and were compared with a control group that followed their regular physical education program of two lessons per week. White matter microstructure was assessed using diffusion tensor imaging in combination with tract-based spatial statistics. Independent component analysis was performed on resting-state data to identify RSNs. Furthermore, neurocognitive functioning (information processing and attention, working memory, motor response inhibition, interference control) was assessed by a set of computerized tasks. Results indicated no Group × Time effects on white matter microstructure or RSN activity, indicating no effects of the exercise interventions on these aspects of brain structure and function. Likewise, no Group × Time effects were found for neurocognitive performance. This study indicated that 14-week school-based interventions regarding neither aerobic exercise nor cognitive-demanding exercise interventions influence brain structure and brain function in healthy children. This study was registered in the Netherlands Trial Register (NTR5341)

    Resting state networks mediate the association between both cardiovascular fitness and gross motor skills with neurocognitive functioning

    Get PDF
    Recent evidence suggests that cardiovascular fitness and gross motor skill performance are related to neurocognitive functioning by influencing brain structure and functioning. This study investigates the role of resting-state networks (RSNs) in the relation of cardiovascular fitness and gross motor skills with neurocognitive functioning in healthy 8- to 11-year-old children (n = 90, 45 girls, 10% migration background). Cardiovascular fitness and gross motor skills were related to brain activity in RSNs. Furthermore, brain activity in RSNs mediated the relation of both cardiovascular fitness (Frontoparietal network and Somatomotor network) and gross motor skills (Somatomotor network) with neurocognitive functioning. The results indicate that brain functioning may contribute to the relation between both cardiovascular fitness and gross motor skills with neurocognitive functioning

    The Effects of Aerobic Versus Cognitively Demanding Exercise Interventions on Executive Functioning in School-Aged Children:A Cluster-Randomized Controlled Trial

    Get PDF
    The authors performed a clustered randomized controlled trial to investigate the effects of an aerobic and a cognitively demanding exercise intervention on executive functions in primary-school-age children compared with the regular physical education program (N = 856). They hypothesized that both exercise interventions would facilitate executive functioning, with stronger effects for the cognitively demanding exercise group. The interventions were provided four times per week for 14 weeks. Linear mixed models were conducted on posttest neurocognitive function measures with baseline level as covariate. No differences were found between the exercise interventions and the control group for any of the measures. Independently of group, dose of moderate to vigorous physical activity was positively related to verbal working memory and attention abilities. This study showed that physical exercise interventions did not enhance executive functioning in children. Exposure to moderate to vigorous physical activity is a crucial aspect of the relationship between physical activity and executive functioning

    Shrubs and Degraded Permafrost Pave the Way for Tree Establishment in Subarctic Peatlands

    Get PDF
    Arctic and subarctic ecosystems are changing rapidly in species composition and functioning as they warm twice as fast as the global average. It has been suggested that tree-less boreal landscapes may shift abruptly to tree-dominated states as climate warms. Yet, we insufficiently understand the conditions and mechanisms underlying tree establishment in the subarctic and arctic regions to anticipate how climate change may further affect ecosystem structure and functioning. We conducted a field experiment to assess the role of permafrost presence, micro-topography and shrub canopy on tree establishment in almost tree-less subarctic peatlands of northern Finland. We introduced seeds and seedlings of four tree-line species and monitored seedling survival and environmental conditions for six growing seasons. Our results show that once seedlings have emerged, the absence of permafrost can enhance early tree seedling survival, but shrub cover is the most important driver of subsequent tree seedling survival in subarctic peatlands. Tree seedling survival was twice as high under an intact shrub canopy than in open conditions after shrub canopy removal. Under unclipped control conditions, seedling survival was positively associated with dense shrub canopies for half of the tree species studied. These strong positive interactions between shrubs and trees may facilitate the transition from today's treeless subarctic landscapes towards tree-dominated states. Our results suggest that climate warming may accelerate this vegetation shift as permafrost is lost, and shrubs further expand across the subarctic.Peer reviewe

    Effects of aerobic exercise and cognitively engaging exercise on cardiorespiratory fitness and motor skills in primary school children:A cluster randomized controlled trial

    Get PDF
    This paper examined effects of two interventions on cardiorespiratory fitness and motor skills, and whether these effects are influenced by baseline levels, and dose of moderate-to-vigorous physical activity (MVPA) during the intervention. A cluster randomized controlled trial was implemented in 22 schools (n = 891; 9.2 ± 07 years). Intervention groups received aerobic or cognitively engaging exercise (14-weeks, four lessons per week). Control groups followed their regular physical education programme. Cardiorespiratory fitness, motor skills and MVPA were assessed. Multilevel analysis showed no main effects on cardiorespiratory fitness and motor skills although the amount of MVPA was higher in the aerobic than in the cognitively engaging and control group. Intervention effects did not depend on baseline cardiorespiratory fitness and motor skills. Children with a higher dose of MVPA within the intervention groups had better cardiorespiratory fitness after both interventions and better motor skills after the cognitively engaging intervention. In conclusion, the interventions were not effective to enhance cardiorespiratory fitness and motor skills at a group level, possibly due to large individual differences and to a total dose of MVPA too low to find effects. However, the amount of MVPA is an important factor that influence the effectiveness of interventions

    Functional microRNA screening using a comprehensive lentiviral human microRNA expression library

    Get PDF
    ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are a class of small regulatory RNAs that target sequences in messenger RNAs (mRNAs) to inhibit their protein output. Dissecting the complexities of miRNA function continues to prove challenging as miRNAs are predicted to have thousands of targets, and mRNAs can be targeted by dozens of miRNAs. RESULTS: To systematically address biological function of miRNAs, we constructed and validated a lentiviral miRNA expression library containing 660 currently annotated and 422 candidate human miRNA precursors. The miRNAs are expressed from their native genomic backbone, ensuring physiological processing. The arrayed layout of the library renders it ideal for high-throughput screens, but also allows pooled screening and hit picking. We demonstrate its functionality in both short- and long-term assays, and are able to corroborate previously described results of well-studied miRNAs. CONCLUSIONS: With the miRNA expression library we provide a versatile tool for the systematic elucidation of miRNA function.

    Impact of sarcopenia on acute radiation-induced toxicity in head and neck cancer patients

    Get PDF
    Background and purpose: Sarcopenia is related to late radiation-induced toxicities and worse survival in head and neck cancer (HNC) patients. This study tested the hypothesis that sarcopenia improves the performance of current normal tissue complication probability (NTCP) models of radiation-induced acute toxicity in HNC patients. Material/methods: This was a retrospective analysis in a prospective cohort of HNC patients treated from January 2007 to December 2018 with (chemo)radiotherapy. Planning CT scans were used for evaluating skeletal muscle mass. Characteristics of sarcopenic and non-sarcopenic patients were compared. The impact of sarcopenia was analysed by adding sarcopenia to the linear predictors of current NTCP models predicting physician- and patient-rated acute toxicities. Results: The cut-off values of sarcopenia in the study population (n = 977) were established at skeletal muscle index = 2, p = 3 dysphagia (week 3-6 during RT, p 0.99). Conclusion: Sarcopenia in HNC patients was an independent prognostic factor for radiation-induced physician-rated acute grade >= 3 dysphagia, which might be explained by its impact on swallowing muscles. However, addition of sarcopenia did not improve the NTCP model performance. (c) 2022 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 170 (2022) 122-128 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Development of advanced preselection tools to reduce redundant plan comparisons in model-based selection of head and neck cancer patients for proton therapy

    Get PDF
    PURPOSE: In the Netherlands, head and neck cancer (HNC) patients are selected for proton therapy (PT) based on estimated normal tissue complication probability differences (ΔNTCP) between photons and protons, which requires a plan comparison (VMAT vs. IMPT). We aimed to develop tools to improve patient selection for plan comparisons. METHODS: This prospective study consisted of 141 consecutive patients in which a plan comparison was done. IMPT plans of patients not qualifying for PT were classified as 'redundant'. To prevent redundant IMPT planning, 5 methods that were primarily based on regression models were developed to predict IMPT Dmean to OARs, by using data from VMAT plans and volumetric data from delineated targets and OARs. Then, actual and predicted plan comparison outcomes were compared. The endpoint was being selected for proton therapy. RESULTS: Seventy out of 141 patients (49.6%) qualified for PT. Using the developed preselection tools, redundant IMPT planning could have been prevented in 49-68% of the remaining 71 patients not qualifying for PT (=specificity) when the sensitivity of all methods was fixed to 100%, i.e., no false negative cases (positive predictive value range: 57-68%, negative predictive value: 100%). CONCLUSION: The advanced preselection tools, which uses volume and VMAT dose data, prevented labour intensive creation of IMPT plans in up to 68% of non-qualifying patients for PT. No patients qualifying for PT would have been incorrectly denied a plan comparison. This method contributes significantly to a more cost-effective model-based selection of HNC patients for PT
    corecore