5,088 research outputs found
10K Ring Electrode Trap - Tandem Mass Spectrometer for Infrared Spectroscopy of Mass Selected Ions
A novel instrumental setup for measuring infrared photodissociation spectra of buffer gas cooled, mass-selected ions is described and tested. It combines a cryogenically cooled, linear radio frequency ion trap with a tandem mass spectrometer, optimally coupling continuous ion sources to pulsed laser experiments. The use of six independently adjustable DC potentials superimposed over the trapping radio frequency field provides control over the ion distribution within, as well as the kinetic energy distribution of the ions extracted from the ion trap. The scheme allows focusing the ions in space and time, such that they can be optimally irradiated by a pulsed, widely tunable infrared photodissociation laser. Ion intensities are monitored with a time-of-flight mass spectrometer mounted orthogonally to the ion trap axis
Nature of Ar bonding to small Co_n^+ clusters and its effect on the structure determination by far-infrared absorption spectroscopy
Far-infrared vibrational spectroscopy by multiple photon dissociation has
proven to be a very useful technique for the structural fingerprinting of small
metal clusters. Contrary to previous studies on cationic V, Nb and Ta clusters,
measured vibrational spectra of small cationic cobalt clusters show a strong
dependence on the number of adsorbed Ar probe atoms, which increases with
decreasing cluster size. Focusing on the series Co_4^+ to Co_8^+ we therefore
use density-functional theory to analyze the nature of the Ar-Co_n^+ bond and
its role for the vibrational spectra. In a first step, energetically low-lying
isomer structures are identified through first-principles basin-hopping
sampling runs and their vibrational spectra computed for a varying number of
adsorbed Ar atoms. A comparison of these fingerprints with the experimental
data enables in some cases a unique assignment of the cluster structure.
Independent of the specific low-lying isomer, we obtain a pronounced increase
of the Ar binding energy for the smallest cluster sizes, which correlates
nicely with the observed increased influence of the Ar probe atoms on the IR
spectra. Further analysis of the electronic structure motivates a simple
electrostatic picture that not only explains this binding energy trend, but
also why the influence of the rare-gas atom is much stronger than in the
previously studied systems.Comment: 12 pages including 10 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Local structure of liquid carbon controls diamond nucleation
Diamonds melt at temperatures above 4000 K. There are no measurements of the
steady-state rate of the reverse process: diamond nucleation from the melt,
because experiments are difficult at these extreme temperatures and pressures.
Using numerical simulations, we estimate the diamond nucleation rate and find
that it increases by many orders of magnitude when the pressure is increased at
constant supersaturation. The reason is that an increase in pressure changes
the local coordination of carbon atoms from three-fold to four-fold. It turns
out to be much easier to nucleate diamond in a four-fold coordinated liquid
than in a liquid with three-fold coordination, because in the latter case the
free-energy cost to create a diamond-liquid interface is higher. We speculate
that this mechanism for nucleation control is relevant for crystallization in
many network-forming liquids. On the basis of our calculations, we conclude
that homogeneous diamond nucleation is likely in carbon-rich stars and unlikely
in gaseous planets
Remote participation during glycosylation reactions of galactose building blocks: Direct evidence from cryogenic vibrational spectroscopy
The stereoselective formation of 1,2‐cis‐glycosidic bonds is challenging. However, 1,2‐cis‐selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short‐lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α‐selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium‐type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2‐cis‐glycosidic bonds
Effects of hole-doping on the magnetic ground state and excitations in the edge-sharing CuO chains of CaYCuO
Neutron scattering experiments were performed on the undoped and hole-doped
CaYCuO, which consists of ferromagnetic edge-sharing
CuO chains. It was previously reported that in the undoped
CaYCuO there is an anomalous broadening of spin-wave
excitations along the chain, which is caused mainly by the antiferromagnetic
interchain interactions [Matsuda , Phys. Rev. B 63, 180403(R)
(2001)]. A systematic study of temperature and hole concentration dependencies
of the magnetic excitations shows that the magnetic excitations are softened
and broadened with increasing temperature or doping holes irrespective of
direction. The broadening is larger at higher . A characteristic feature is
that hole-doping is much more effective to broaden the excitations along the
chain. It is also suggested that the intrachain interaction does not change so
much with increasing temperature or doping although the anisotropic interaction
and the interchain interaction are reduced. In the spin-glass phase (=1.5)
and nearly disordered phase (=1.67) the magnetic excitations are much
broadened in energy and . It is suggested that the spin-glass phase
originates from the antiferromagnetic clusters, which are caused by the hole
disproportionation.Comment: 8 pages, submitted to Phys. Rev.
Dynamic stability control in younger and older adults during stair descent.
The purpose of this study was to examine dynamic stability control in older and younger adults while descending stairs. Thirteen older (aged 64-77years) and 13 younger (aged 22-29years) adults descended a staircase at their preferred speed. A motion capture system and three force plates were used to determine locomotion mechanics. Dynamic stability was investigated by using the margin of stability, calculated as the instantaneous difference between anterior boundary of the base of support and extrapolated centre of mass. At the initiation of the single support phase, older adults demonstrated a more negative (p<.05) margin of stability value. The component responsible for the lower margin of stability in the elderly was the higher velocity of the centre of mass (p<.05). Before the initiation of the single support phase, the older adults showed a lower (p<.05) ankle and knee joint angular impulse compared to the younger ones. We found a significant correlation (r=.729, p<.05) between centre of mass velocity and joint angular impulse. These results indicate that older adults are at greater risk of falls while descending stairs potentially due to a reduced ability to generate adequate leg-extensor muscular output to safely control the motion of the body's centre of mass while stepping down
Spectroscopy of Small and Large Biomolecular Ions in Helium-Nanodroplets
A vast number of experiments have now shown that helium nanodroplets are an exemplary cryogenic matrix for spectroscopic investigations. The experimental techniques are well established and involve in most cases the pickup of evaporated neutral species by helium droplets. These techniques have been extended within our research group to enable nanodroplet pickup of anions or cations stored in an ion trap. By using electrospray ionization (ESI) in combination with modern mass spec- trometric methods to supply ions to the trap, an immense variety of mass-to-charge selected species can be doped into the droplets and spectroscopically investigated. We have combined this droplet doping methodology with IR action spectroscopy to investigate anions and cations ranging in size from a few atoms to proteins that consist of thousands of atoms. Herein, we show examples of small complexes of fluoride anions (F-) with CO2 and H2O and carbohydrate molecules. In the case of the small complexes, novel compounds could be identified, and quantum chemistry can in some instances quantitatively explain the results. For biologically relevant complex carbohydrate molecules, the IR spectra are highly diagnostic and allow the differentiation of species that would be difficult or impossible to identify by more conventional methods
Helium Nanodroplet Infrared Action Spectroscopy of the Proton-Bound Dimer of Hydrogen Sulfate and Formate: Examining Nuclear Quantum Effects
The proton-bound dimer of hydrogen sulfate and formate is an archetypal structure for ionic hydrogen-bonding complexes that contribute to biogenic aerosol nucleation. Of central importance for the structure and properties of this complex is the location of the bridging proton connecting the two conjugate base moieties. The potential energy surface for bridging proton translocation features two local minima, with the proton localized at either the formate or hydrogen sulfate moiety. However, electronic structure methods reveal a shallow potential energy surface governing proton translocation, with a barrier on the order of the zero-point energy. This shallow potential complicates structural assignment and necessitates a consideration of nuclear quantum effects. In this work, we probe the structure of this complex and its isotopologues, utilizing infrared (IR) action spectroscopy of ions captured in helium nanodroplets. The IR spectra indicate a structure in which a proton is shared between the hydrogen sulfate and formate moieties, HSO4-···H+···-OOCH. However, because of the nuclear quantum effects and vibrational anharmonicities associated with the shallow potential for proton translocation, the extent of proton displacement from the formate moiety remains unclear, requiring further experiments or more advanced theoretical treatments for additional insight
A note on the sign (unit root) ambiguities of Gauss sums in index 2 and 4 cases
Recently, the explicit evaluation of Gauss sums in the index 2 and 4 cases
have been given in several papers (see [2,3,7,8]). In the course of evaluation,
the sigh (or unit root) ambiguities are unavoidably occurred. This paper
presents another method, different from [7] and [8], to determine the sigh
(unit root) ambiguities of Gauss sums in the index 2 case, as well as the ones
with odd order in the non-cyclic index 4 case. And we note that the method in
this paper are more succinct and effective than [8] and [7]
Complete Solving for Explicit Evaluation of Gauss Sums in the Index 2 Case
Let be a prime number, for some positive integer , be a
positive integer such that , and let \k be a primitive
multiplicative character of order over finite field \fq. This paper
studies the problem of explicit evaluation of Gauss sums in "\textsl{index 2
case}" (i.e. f=\f{\p(N)}{2}=[\zn:\pp], where \p(\cd) is Euler function).
Firstly, the classification of the Gauss sums in index 2 case is presented.
Then, the explicit evaluation of Gauss sums G(\k^\la) (1\laN-1) in index 2
case with order being general even integer (i.e. N=2^{r}\cd N_0 where
are positive integers and is odd.) is obtained. Thus, the
problem of explicit evaluation of Gauss sums in index 2 case is completely
solved
- …