169 research outputs found

    A Novel Evolution-Based Method for Detecting Gene-Gene Interactions

    Get PDF
    BACKGROUND: The rapid advance in large-scale SNP-chip technologies offers us great opportunities in elucidating the genetic basis of complex diseases. Methods for large-scale interactions analysis have been under development from several sources. Due to several difficult issues (e.g., sparseness of data in high dimensions and low replication or validation rate), development of fast, powerful and robust methods for detecting various forms of gene-gene interactions continues to be a challenging task. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we have developed an evolution-based method to search for genome-wide epistasis in a case-control design. From an evolutionary perspective, we view that human diseases originate from ancient mutations and consider that the underlying genetic variants play a role in differentiating human population into the healthy and the diseased. Based on this concept, traditional evolutionary measure, fixation index (Fst) for two unlinked loci, which measures the genetic distance between populations, should be able to reveal the responsible genetic interplays for disease traits. To validate our proposal, we first investigated the theoretical distribution of Fst by using extensive simulations. Then, we explored its power for detecting gene-gene interactions via SNP markers, and compared it with the conventional Pearson Chi-square test, mutual information based test and linkage disequilibrium based test under several disease models. The proposed evolution-based method outperformed these compared methods in dominant and additive models, no matter what the disease allele frequencies were. However, its performance was relatively poor in a recessive model. Finally, we applied the proposed evolution-based method to analysis of a published dataset. Our results showed that the P value of the Fst -based statistic is smaller than those obtained by the LD-based statistic or Poisson regression models. CONCLUSIONS/SIGNIFICANCE: With rapidly growing large-scale genetic association studies, the proposed evolution-based method can be a promising tool in the identification of epistatic effects

    Genetic Variants of IDE-KIF11-HHEX at 10q23.33 Associated with Type 2 Diabetes Risk: A Fine-Mapping Study in Chinese Population

    Get PDF
    Background: Genome-wide association studies (GWAS) in populations of European ancestry have mapped a type 2 diabetes susceptibility region to chromosome 10q23.33 containing IDE, KIF11 and HHEX genes (IDE-KIF11-HHEX), which has also been replicated in Chinese populations. However, the functional relevance for genetic variants at this locus is still unclear. It is critical to systematically assess the relationship of genetic variants in this region with the risk of type 2 diabetes. Methodology/Principal Findings: A fine-mapping study was conducted by genotyping fourteen tagging single-nucleotide polymorphisms (SNPs) in a 290-kb linkage disequilibrium (LD) region using a two-stage case-control study of type 2 diabetes in a Chinese Han population. Suggestive associations (P,0.05) observed from 1,200 cases and 1,200 controls in the first stage were further replicated in 1,725 cases and 2,081 controls in the second stage. Seven tagging SNPs were consistently associated with type 2 diabetes in both stages (P,0.05), with combined odds ratios (ORs) ranging from 1.14 to 1.33 in the combined analysis. The most significant locus was rs7923837 [OR = 1.33, 95 % confidence interval (CI): 1.21–1.47] at the 39-flanking region of HHEX gene. SNP rs1111875 was found to be another partially independent locus (OR = 1.23, 95% CI: 1.13–1.35) in this region that was associated with type 2 diabetes risk. A cumulative effect of rs7923837 and rs1111875 was observed with individuals carrying 1, 2, and 3 or 4 risk alleles having a 1.27, 1.44, and 1.73-fold increased risk, respectively, for type 2 diabetes (P for trend = 4.1E-10)

    GPU-based ultra fast dose calculation using a finite pencil beam model

    Full text link
    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well-suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation on a case of a water phantom and a case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200~400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a 9-field prostate IMRT plan with this new framework is less than 1 second. This indicates that the GPU-based FSPB algorithm is well-suited for online re-planning for adaptive radiotherapy.Comment: submitted Physics in Medicine and Biolog

    Quantitative Proteomics Identifies the Myb-Binding Protein p160 as a Novel Target of the von Hippel-Lindau Tumor Suppressor

    Get PDF
    Background: The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of a ubiquitin ligase complex, which is best understood as a negative regulator of hypoxia inducible factor (HIF). VHL ubiquitinates and degrades the a subunits of HIF, and this is proposed to suppress tumorigenesis and tumor angiogenesis. However, several lines of evidence suggest that there are unidentified substrates or targets for VHL that play important roles in tumor suppression. Methodology/Principal Findings: Employing quantitative proteomics, we developed an approach to systematically identify the substrates of ubiquitin ligases and using this method, we identified the Myb-binding protein p160 as a novel substrate of VHL. Conclusions/Significance: A major barrier to understanding the functions of ubiquitin ligases has been the difficulty in pinpointing their ubiquitination substrates. The quantitative proteomics approach we devised for the identification of VHL substrates will be widely applicable to other ubiquitin ligases

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • …
    corecore