1,160 research outputs found

    Quantifying Activity Levels After Sport-Related Concussion Using Actigraph and Mobile (mHealth) Technologies

    Get PDF
    Context Interest in identifying the effects of physical and mental activity on recovery after sport-related concussion is growing. Clinical studies of concussed athletes\u27 activities require well-validated methods for tracking their intensity and timing. Objective To develop and validate a novel multimodal approach to monitoring activity postconcussion using mobile (mHealth) technologies. Design Cohort study. Setting Translational research unit. Patients or Other Participants A total of 40 high school and collegiate football players were evaluated at preseason and followed longitudinally after either concussion (n = 25; age = 17.88 ± 1.74 years, height = 182.07 ± 8.08 cm, mass = 98.36 ± 21.70 kg) or selection as a nonconcussed control (n = 15; age = 18.27 ± 1.83 years, height = 180.01 ± 7.19 cm, mass = 93.83 ± 24.56 kg). Main Outcome Measure(s) Participants wore a commercial actigraph and completed a daily mobile survey for 2 weeks. Analyses focused on comparisons between groups for actigraph-based physical activity and self-reported physical and mental activity during the follow-up period. Results For the first 2 days postinjury, objective measures showed fewer daily steps in concussed (6663 ± 2667 steps) than in control (11 148 ± 3381 steps) athletes (P \u3c .001), and both objective and self-reported measures indicated less moderate to vigorous physical activity in concussed (27.6 ± 32.6 min/d and 25.0 ± 43.6 min/d, respectively) than in control (57.3 ± 38.6 min/d and 67.5 ± 40.1 min/d, respectively) athletes (both P values \u3c .05). Correlations between objective and self-reported measures of moderate to vigorous physical activity were moderate across select 1-week and 2-week averages. We observed no group differences in self-reported mental activities. Conclusions Physical activity after sport-related concussion varied widely across athletes but on average was reduced during the acute and early subacute postinjury periods for both objective and self-reported measures. The lack of differences in mental activities between groups may reflect limited change in mental exertion postconcussion or difficulty accurately measuring mental activities. Assessing concussed athletes\u27 activities using actigraphy and self-reported scales may help monitor their compliance with activity recommendations and be useful in studies aimed at better understanding the effects of physical activity on concussion recovery

    The Association Between Persistent White-Matter Abnormalities and Repeat Injury After Sport-Related Concussion

    Get PDF
    Objective: A recent systematic review determined that the physiological effects of concussion may persist beyond clinical recovery. Preclinical models suggest that ongoing physiological effects are accompanied by increased cerebral vulnerability that is associated with risk for subsequent, more severe injury. This study examined the association between signal alterations on diffusion tensor imaging following clinical recovery of sport-related concussion in athletes with and without a subsequent second concussion. Methods: Average mean diffusivity (MD) was calculated in a region of interest (ROI) in which concussed athletes (n = 82) showed significantly elevated MD acutely after injury (<48 h), at an asymptomatic time point, 7 days post-return to play (RTP), and 6 months relative to controls (n = 69). The relationship between MD in the identified ROI and likelihood of sustaining a subsequent concussion over a 1-year period was examined with a binary logistic regression (re-injured, yes/no). Results: Eleven of 82 concussed athletes (13.4%) sustained a second concussion within 12 months of initial injury. Mean MD at 7 days post-RTP was significantly higher in those athletes who went on to sustain a repeat concussion within 1 year of initial injury than those who did not (p = 0.048; d = 0.75). In this underpowered sample, the relationship between MD at 7 days post-RTP and likelihood of sustaining a secondary injury approached significance [χ2 (1) = 4.17, p = 0.057; B = 0.03, SE = 0.017; OR = 1.03, CI = 0.99, 1.07]. Conclusions: These preliminary findings raise the hypothesis that persistent signal abnormalities in diffusion imaging metrics at RTP following concussion may be predictive of a repeat concussion. This may reflect a window of cerebral vulnerability or increased susceptibility following concussion, though understanding the clinical significance of these findings requires further study

    Capacity-Speed Relationships in Prefrontal Cortex

    Get PDF
    Working memory (WM) capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to be interrelated in behavioral studies, yet the neural mechanism behind this interdependence has not been elucidated. We have carried out two functional MRI studies to separately identify brain regions involved in capacity and speed. Experiment 1, using a block-design WM verbal task, identified increased WM capacity with increased activity in right prefrontal regions, and Experiment 2, using a single-trial WM verbal task, identified increased WM processing speed with increased activity in similar regions. Our results suggest that right prefrontal areas may be a common region interlinking these two cognitive measures. Moreover, an overlap analysis with regions associated with binding or chunking suggest that this strategic memory consolidation process may be the mechanism interlinking WM capacity and WM speed.National Center for Research Resources (U.S.) (grant UL1RR025011)National Institutes of Health (U.S.) (grant NIH RO1 DC05375)Wallace H. Coulter FoundationNational Institute of Mental Health (U.S.) (Challenge Grant RC1MH090912-01

    Validating age-related functional imaging changes in verbal working memory with acute stroke

    Get PDF
    Abstract. Functional imaging studies consistently find that older adults recruit bilateral brain regions in cognitive tasks that are strongly lateralized in younger adults, a characterization known as the Hemispheric Asymmetry Reduction in Older Adults model. While functional imaging displays what brain areas are active during tasks, it cannot demonstrate what brain regions are necessary for task performance. We used behavioral data from acute stroke patients to test the hypothesis that older adults need both hemispheres for a verbal working memory task that is predominantly left-lateralized in younger adults. Right-handed younger (age 50, n = 7) and older adults (age &gt; 50, n = 21) with acute unilateral stroke, as well as younger (n = 6) and older (n = 13) transient ischemic attack (TIA) patients, performed a self-paced verbal item-recognition task. Older patients with stroke to either hemisphere had a higher frequency of deficits in the verbal working memory task compared to older TIA patients. Additionally, the deficits in older stroke patients were mainly in retrieval time while the deficits in younger stroke patients were mainly in accuracy. These data suggest that bihemispheric activity is necessary for older adults to successfully perform a verbal working memory task

    Reproducibility and Characterization of Head Kinematics During a Large Animal Acceleration Model of Traumatic Brain Injury

    Get PDF
    Acceleration parameters have been utilized for the last six decades to investigate pathology in both human and animal models of traumatic brain injury (TBI), design safety equipment, and develop injury thresholds. Previous large animal models have quantified acceleration from impulsive loading forces (i.e., machine/object kinematics) rather than directly measuring head kinematics. No study has evaluated the reproducibility of head kinematics in large animal models. Nine (five males) sexually mature Yucatan swine were exposed to head rotation at a targeted peak angular velocity of 250 rad/s in the coronal plane. The results indicated that the measured peak angular velocity of the skull was 51% of the impulsive load, was experienced over 91% longer duration, and was multi- rather than uni-planar. These findings were replicated in a second experiment with a smaller cohort (N = 4). The reproducibility of skull kinematics data was mostly within acceptable ranges based on published industry standards, although the coefficients of variation (8.9% for peak angular velocity or 12.3% for duration) were higher than the impulsive loading parameters produced by the machine (1.1 vs. 2.5%, respectively). Immunohistochemical markers of diffuse axonal injury and blood–brain barrier breach were not associated with variation in either skull or machine kinematics, suggesting that the observed levels of variance in skull kinematics may not be biologically meaningful with the current sample sizes. The findings highlight the reproducibility of a large animal acceleration model of TBI and the importance of direct measurements of skull kinematics to determine the magnitude of angular velocity, refine injury criteria, and determine critical thresholds

    Association of Blood Biomarkers With Acute Sport-Related Concussion in Collegiate Athletes: Findings From the NCAA and Department of Defense CARE Consortium

    Get PDF
    Importance: There is potential scientific and clinical value in validation of objective biomarkers for sport-related concussion (SRC). Objective: To investigate the association of acute-phase blood biomarker levels with SRC in collegiate athletes. Design, Setting, and Participants: This multicenter, prospective, case-control study was conducted by the National Collegiate Athletic Association (NCAA) and the US Department of Defense Concussion Assessment, Research, and Education (CARE) Consortium from February 20, 2015, to May 31, 2018, at 6 CARE Advanced Research Core sites. A total of 504 collegiate athletes with concussion, contact sport control athletes, and non-contact sport control athletes completed clinical testing and blood collection at preseason baseline, the acute postinjury period, 24 to 48 hours after injury, the point of reporting being asymptomatic, and 7 days after return to play. Data analysis was conducted from March 1 to November 30, 2019. Main Outcomes and Measures: Glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light chain, and tau were quantified using the Quanterix Simoa multiplex assay. Clinical outcome measures included the Sport Concussion Assessment Tool-Third Edition (SCAT-3) symptom evaluation, Standardized Assessment of Concussion, Balance Error Scoring System, and Brief Symptom Inventory 18. Results: A total of 264 athletes with concussion (mean [SD] age, 19.08 [1.24] years; 211 [79.9%] male), 138 contact sport controls (mean [SD] age, 19.03 [1.27] years; 107 [77.5%] male), and 102 non-contact sport controls (mean [SD] age, 19.39 [1.25] years; 82 [80.4%] male) were included in the study. Athletes with concussion had significant elevation in GFAP (mean difference, 0.430 pg/mL; 95% CI, 0.339-0.521 pg/mL; P < .001), UCH-L1 (mean difference, 0.449 pg/mL; 95% CI, 0.167-0.732 pg/mL; P < .001), and tau levels (mean difference, 0.221 pg/mL; 95% CI, 0.046-0.396 pg/mL; P = .004) at the acute postinjury time point compared with preseason baseline. Longitudinally, a significant interaction (group × visit) was found for GFAP (F7,1507.36 = 16.18, P < .001), UCH-L1 (F7,1153.09 = 5.71, P < .001), and tau (F7,1480.55 = 6.81, P < .001); the interaction for neurofilament light chain was not significant (F7,1506.90 = 1.33, P = .23). The area under the curve for the combination of GFAP and UCH-L1 in differentiating athletes with concussion from contact sport controls at the acute postinjury period was 0.71 (95% CI, 0.64-0.78; P < .001); the acute postinjury area under the curve for all 4 biomarkers combined was 0.72 (95% CI, 0.65-0.79; P < .001). Beyond SCAT-3 symptom score, GFAP at the acute postinjury time point was associated with the classification of athletes with concussion from contact controls (β = 12.298; 95% CI, 2.776-54.481; P = .001) and non-contact sport controls (β = 5.438; 95% CI, 1.676-17.645; P = .005). Athletes with concussion with loss of consciousness or posttraumatic amnesia had significantly higher levels of GFAP than athletes with concussion with neither loss of consciousness nor posttraumatic amnesia at the acute postinjury time point (mean difference, 0.583 pg/mL; 95% CI, 0.369-0.797 pg/mL; P < .001). Conclusions and Relevance: The results suggest that blood biomarkers can be used as research tools to inform the underlying pathophysiological mechanism of concussion and provide additional support for future studies to optimize and validate biomarkers for potential clinical use in SRC

    Role of biomarkers and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion: a systematic review

    Get PDF
    OBJECTIVE: Determine the role of fluid-based biomarkers, advanced neuroimaging, genetic testing and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion (SRC). DESIGN: Systematic review. DATA SOURCES: Searches of seven databases from 1 January 2001 through 24 March 2022 using keywords and index terms relevant to concussion, sports and neurobiological recovery. Separate reviews were conducted for studies involving neuroimaging, fluid biomarkers, genetic testing and emerging technologies. A standardised method and data extraction tool was used to document the study design, population, methodology and results. Reviewers also rated the risk of bias and quality of each study. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Studies were included if they: (1) were published in English; (2) represented original research; (3) involved human research; (4) pertained only to SRC; (5) included data involving neuroimaging (including electrophysiological testing), fluid biomarkers or genetic testing or other advanced technologies used to assess neurobiological recovery after SRC; (6) had a minimum of one data collection point within 6 months post-SRC; and (7) contained a minimum sample size of 10 participants. RESULTS: A total of 205 studies met inclusion criteria, including 81 neuroimaging, 50 fluid biomarkers, 5 genetic testing, 73 advanced technologies studies (4 studies overlapped two separate domains). Numerous studies have demonstrated the ability of neuroimaging and fluid-based biomarkers to detect the acute effects of concussion and to track neurobiological recovery after injury. Recent studies have also reported on the diagnostic and prognostic performance of emerging technologies in the assessment of SRC. In sum, the available evidence reinforces the theory that physiological recovery may persist beyond clinical recovery after SRC. The potential role of genetic testing remains unclear based on limited research. CONCLUSIONS: Advanced neuroimaging, fluid-based biomarkers, genetic testing and emerging technologies are valuable research tools for the study of SRC, but there is not sufficient evidence to recommend their use in clinical practice. PROSPERO REGISTRATION NUMBER: CRD42020164558

    A primary care, multi-disciplinary disease management program for opioid-treated patients with chronic non-cancer pain and a high burden of psychiatric comorbidity

    Get PDF
    BACKGROUND: Chronic non-cancer pain is a common problem that is often accompanied by psychiatric comorbidity and disability. The effectiveness of a multi-disciplinary pain management program was tested in a 3 month before and after trial. METHODS: Providers in an academic general medicine clinic referred patients with chronic non-cancer pain for participation in a program that combined the skills of internists, clinical pharmacists, and a psychiatrist. Patients were either receiving opioids or being considered for opioid therapy. The intervention consisted of structured clinical assessments, monthly follow-up, pain contracts, medication titration, and psychiatric consultation. Pain, mood, and function were assessed at baseline and 3 months using the Brief Pain Inventory (BPI), the Center for Epidemiological Studies-Depression Scale scale (CESD) and the Pain Disability Index (PDI). Patients were monitored for substance misuse. RESULTS: Eighty-five patients were enrolled. Mean age was 51 years, 60% were male, 78% were Caucasian, and 93% were receiving opioids. Baseline average pain was 6.5 on an 11 point scale. The average CESD score was 24.0, and the mean PDI score was 47.0. Sixty-three patients (73%) completed 3 month follow-up. Fifteen withdrew from the program after identification of substance misuse. Among those completing 3 month follow-up, the average pain score improved to 5.5 (p = 0.003). The mean PDI score improved to 39.3 (p < 0.001). Mean CESD score was reduced to 18.0 (p < 0.001), and the proportion of depressed patients fell from 79% to 54% (p = 0.003). Substance misuse was identified in 27 patients (32%). CONCLUSIONS: A primary care disease management program improved pain, depression, and disability scores over three months in a cohort of opioid-treated patients with chronic non-cancer pain. Substance misuse and depression were common, and many patients who had substance misuse identified left the program when they were no longer prescribed opioids. Effective care of patients with chronic pain should include rigorous assessment and treatment of these comorbid disorders and intensive efforts to insure follow up

    Return to play and risk of repeat concussion in collegiate football players: comparative analysis from the NCAA Concussion Study (1999–2001) and CARE Consortium (2014–2017)

    Get PDF
    Objective We compared data from the National Collegiate Athletic Association (NCAA) Concussion Study (1999–2001) and the NCAA-Department of Defense Concussion Assessment, Research and Education (CARE) Consortium (2014–2017) to examine how clinical management, return to play (RTP) and risk of repeat concussion in collegiate football players have changed over the past 15 years. Methods We analysed data on reported duration of symptoms, symptom-free waiting period (SFWP), RTP and occurrence of within-season repeat concussion in collegiate football players with diagnosed concussion from the NCAA Study (n=184) and CARE (n=701). Results CARE athletes had significantly longer symptom duration (CARE median=5.92 days, IQR=3.02–9.98 days; NCAA median=2.00 days, IQR=1.00–4.00 days), SFWP (CARE median=6.00 days, IQR=3.49–9.00 days; NCAA median=0.98 days, IQR=0.00–4.00 days) and RTP (CARE median=12.23 days, IQR=8.04–18.92 days; NCAA median=3.00 days, IQR=1.00–8.00 days) than NCAA Study athletes (all p<0.0001). In CARE, there was only one case of repeat concussion within 10 days of initial injury (3.7% of within-season repeat concussions), whereas 92% of repeat concussions occurred within 10 days in the NCAA Study (p<0.001). The average interval between first and repeat concussion in CARE was 56.41 days, compared with 5.59 days in the NCAA Study (M difference=50.82 days; 95% CI 38.37 to 63.27; p<0.0001). Conclusion Our findings indicate that concussion in collegiate football is managed more conservatively than 15 years ago. These changes in clinical management appear to have reduced the risk of repetitive concussion during the critical period of cerebral vulnerability after sport-related concussion (SRC). These data support international guidelines recommending additional time for brain recovery before athletes RTP after SRC
    • …
    corecore