16,445 research outputs found

    Multi-Dimensional Astrophysical Structural and Dynamical Analysis I. Development of a Nonlinear Finite Element Approach

    Full text link
    A new field of numerical astrophysics is introduced which addresses the solution of large, multidimensional structural or slowly-evolving problems (rotating stars, interacting binaries, thick advective accretion disks, four dimensional spacetimes, etc.). The technique employed is the Finite Element Method (FEM), commonly used to solve engineering structural problems. The approach developed herein has the following key features: 1. The computational mesh can extend into the time dimension, as well as space, perhaps only a few cells, or throughout spacetime. 2. Virtually all equations describing the astrophysics of continuous media, including the field equations, can be written in a compact form similar to that routinely solved by most engineering finite element codes. 3. The transformations that occur naturally in the four-dimensional FEM possess both coordinate and boost features, such that (a) although the computational mesh may have a complex, non-analytic, curvilinear structure, the physical equations still can be written in a simple coordinate system independent of the mesh geometry. (b) if the mesh has a complex flow velocity with respect to coordinate space, the transformations will form the proper arbitrary Lagrangian- Eulerian advective derivatives automatically. 4. The complex difference equations on the arbitrary curvilinear grid are generated automatically from encoded differential equations. This first paper concentrates on developing a robust and widely-applicable set of techniques using the nonlinear FEM and presents some examples.Comment: 28 pages, 9 figures; added integral boundary conditions, allowing very rapidly-rotating stars; accepted for publication in Ap.

    Glass-Steel Beams as Structural Members of Façades

    Get PDF
    Glass used in structural applications enables a higher level of transparency in façades.However, attention should be paid to the material specific properties, such asbrittleness and its incapability of plastic deformation. Laminated glass beams mayimprove several properties due to the elastic behaviour of the interlayer material.Contrary to laminated panes, which are subject to plate bending, laminated beamslose all their bearing capacity in case all individual plies are broken. The presentedhybrid beams that are composed of glass and steel and bonded together with atransparent acrylate adhesive are developed to improve the post-breakage performanceof transparent beams. Hybrid beams, therefore, offer a variety of potential applicationsin façades and glass structures. Within this research, a number of hybridbeams with different cross sections and combinations of glass and steel were tested.The results confirm a better structural behaviour of hybrid beams in comparisonwith conventional laminated glass beams

    Development of a germanium-68 radionuclide production technology by irradiation of enriched isotope zinc-66 in the R7M

    Get PDF
    In the present study, we performed the evaluation and experimental determination of 68Ge production using alpha particle beams in the R7M cyclotron of the Tomsk Polytechnic University

    Qualification Procedures of the CMS Pixel Barrel Modules

    Full text link
    The CMS pixel barrel system will consist of three layers built of about 800 modules. One module contains 66560 readout channels and the full pixel barrel system about 48 million channels. It is mandatory to test each channel for functionality, noise level, trimming mechanism, and bump bonding quality. Different methods to determine the bump bonding yield with electrical measurements have been developed. Measurements of several operational parameters are also included in the qualification procedure. Among them are pixel noise, gains and pedestals. Test and qualification procedures of the pixel barrel modules are described and some results are presented.Comment: 7 Pages, 7 Figures. Contribution to Pixel 2005, September 5-8, 2005, Bonn, Germna

    Building CMS Pixel Barrel Detectur Modules

    Get PDF
    For the barrel part of the CMS pixel tracker about 800 silicon pixel detector modules are required. The modules are bump bonded, assembled and tested at the Paul Scherrer Institute. This article describes the experience acquired during the assembly of the first ~200 modules.Comment: 5 pages, 7 figures, Vertex200

    Detection of DC currents and resistance measurements in longitudinal spin Seebeck effect experiments on Pt/YIG and Pt/NFO

    Full text link
    In this work we investigated thin films of the ferrimagnetic insulators YIG and NFO capped with thin Pt layers in terms of the longitudinal spin Seebeck effect (LSSE). The electric response detected in the Pt layer under an out-of-plane temperature gradient can be interpreted as a pure spin current converted into a charge current via the inverse spin Hall effect. Typically, the transverse voltage is the quantity investigated in LSSE measurements (in the range of \mu V). Here, we present the directly detected DC current (in the range of nA) as an alternative quantity. Furthermore, we investigate the resistance of the Pt layer in the LSSE configuration. We found an influence of the test current on the resistance. The typical shape of the LSSE curve varies for increasing test currents.Comment: 4 pages, 2 figure
    corecore