1,442 research outputs found

    A hit-and-run Giant Impact scenario

    Full text link
    The formation of the Moon from the debris of a slow and grazing giant impact of a Mars-sized impactor on the proto-Earth (Cameron & Ward 1976, Canup & Asphaug 2001) is widely accepted today. We present an alternative scenario with a hit-and-run collision (Asphaug 2010) with a fractionally increased impact velocity and a steeper impact angle.Comment: 11 pages, 2 figures, in press in ICARUS note

    Cosmic-ray exposure ages of fossil micrometeorites from mid-Ordovician sediments at Lynna River, Russia

    Full text link
    We measured the He and Ne concentrations of 50 individual extraterrestrial chromite grains recovered from mid-Ordovician (lower Darriwilian) sediments from the Lynna River section near St. Petersburg, Russia. High concentrations of solar wind-like He and Ne found in most grains indicate that they were delivered to Earth as micrometeoritic dust, while their abundance, stratigraphic position and major element composition indicate an origin related to the L chondrite parent body (LCPB) break-up event, 470 Ma ago. Compared to sediment-dispersed extraterrestrial chromite (SEC) grains extracted from coeval sediments at other localities, the grains from Lynna River are both highly concentrated and well preserved. As in previous work, in most grains from Lynna River, high concentrations of solar wind-derived He and Ne impede a clear quantification of cosmic-ray produced He and Ne. However, we have found several SEC grains poor in solar wind Ne, showing a resolvable contribution of cosmogenic 21Ne. This makes it possible, for the first time, to determine robust cosmic-ray exposure (CRE) ages in these fossil micrometeorites, on the order of a few hundred-thousand years. These ages are similar to the CRE ages measured in chromite grains from cm-sized fossil meteorites recovered from coeval sediments in Sweden. As the CRE ages are shorter than the orbital decay time of grains of this size by Poynting-Robertson drag, this suggests that the grains were delivered to Earth through direct injection into an orbital resonance. We demonstrate how CRE ages of fossil micrometeorites can be used, in principle, to determine sedimentation rates, and to correlate the sediments at Lynna River with the fossil meteorite-bearing sediment layers in Sweden.Comment: 25 pages, 4 figures, 2 table

    Evaluating On-Farm Biodiversity: A Comparison of Assessment Methods

    Get PDF
    Strategies to stop the loss of biodiversity in agriculture areas will be more successful if farmers have the means to understand changes in biodiversity on their farms and to assess the effectiveness of biodiversity promoting measures. There are several methods to assess on-farm biodiversity but it may be difficult to select the most appropriate method for a farmer’s individual circumstances. This study aims to evaluate the usability and usefulness of four biodiversity assessment methods that are available to farmers in Switzerland. All four methods were applied to five case study farms, which were ranked according to the results. None of the methods were able to provide an exact statement on the current biodiversity status of the farms, but each method could provide an indication, or approximation, of one or more aspects of biodiversity. However, the results also showed that it is possible to generate different statements on the state of biodiversity on the same farms by using different biodiversity assessment methods. All methods showed strengths and weaknesses so, when choosing a method, the purpose of the biodiversity assessment should be kept in the foreground and the limitations of the chosen methods should be considered when interpreting the outcomes

    Mercury (Hg) in meteorites: variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation

    Full text link
    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14'000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150 to 650 {\deg}C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg ({\delta}202Hg = ~-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ~2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.Comment: 43 Pages, 9 Figures. Accepted for publication in Geochimica et Cosmochimica Act

    On the origin and composition of Theia: Constraints from new models of the Giant Impact

    Full text link
    Knowing the isotopic composition of Theia, the proto-planet which collided with the Earth in the Giant Impact that formed the Moon, could provide interesting insights on the state of homogenization of the inner solar system at the late stages of terrestrial planet formation. We use the known isotopic and modeled chemical compositions of the bulk silicate mantles of Earth and Moon and combine them with different Giant Impact models, to calculate the possible ranges of isotopic composition of Theia in O, Si, Ti, Cr, Zr and W in each model. We compare these ranges to the isotopic composition of carbonaceous chondrites, Mars, and other solar system materials. In the absence of post-impact isotopic re-equilibration, the recently proposed high angular momentum models of the Giant Impact ("impact-fission", Cuk & Stewart, 2012; and "merger", Canup, 2012) allow - by a narrow margin - for a Theia similar to CI-chondrites, and Mars. The "hit-and-run" model (Reufer et al., 2012) allows for a Theia similar to enstatite-chondrites and other Earth-like materials. If the Earth and Moon inherited their different mantle FeO contents from the bulk mantles of the proto-Earth and Theia, the high angular momentum models cannot explain the observed difference. However, both the hit-and-run as well as the classical or "canonical" Giant Impact model naturally explain this difference as the consequence of a simple mixture of two mantles with different FeO. Therefore, the simplest way to reconcile the isotopic similarity, and FeO dissimilarity, of Earth and Moon is a Theia with an Earth-like isotopic composition and a higher (~20%) mantle FeO content.Comment: 53 Pages, 10 Figures, 1 Table, 3 Supplementary Table

    Primordial Earth mantle heterogeneity caused by the Moon-forming giant impact

    Get PDF
    The giant impact hypothesis for Moon formation successfully explains the dynamic properties of the Earth-Moon system but remains challenged by the similarity of isotopic fingerprints of the terrestrial and lunar mantles. Moreover, recent geochemical evidence suggests that the Earth's mantle preserves ancient (or "primordial") heterogeneity that predates the Moon-forming giant impact. Using a new hydrodynamical method, we here show that Moon-forming giant impacts lead to a stratified starting condition for the evolution of the terrestrial mantle. The upper layer of the Earth is compositionally similar to the disk, out of which the Moon evolves, whereas the lower layer preserves proto-Earth characteristics. As long as this predicted compositional stratification can at least partially be preserved over the subsequent billions of years of Earth mantle convection, the compositional similarity between the Moon and the accessible Earth's mantle is a natural outcome of realistic and high-probability Moon-forming impact scenarios. The preservation of primordial heterogeneity in the modern Earth not only reconciles geochemical constraints but is also consistent with recent geophysical observations. Furthermore, for significant preservation of a proto-Earth reservoir, the bulk composition of the Earth-Moon system may be systematically shifted towards chondritic values.Comment: Comments are welcom

    Detection of Tropheryma whippelii DNA in a patient with AIDS

    Get PDF
    A case of an AIDS patient infected with the Whipple's disease bacterium, Tropheryma whippelii, is reported. A DNA fragment with sequence specificity for the 16S rRNA gene of the bacterium was detected by PCR in a duodenal biopsy specimen from a 55-year-old male patient with AIDS and diarrhea. The biopsy specimen contained periodic acid-Schiff stain-positive macrophages which did not, however, resemble the sickleform-particle-containing cells characteristic of Whipple's disease. This observation raises two possibilities: either the patient had a coincidence of AIDS and Whipple's disease or Tropheryma whippelii acted as an opportunistic pathogen in this immunodeficient patient. The latter explanation is of interest in light of the ongoing discussion of immunologic abnormalities as predisposing factors for Whipple's disease

    GENGA. II. GPU Planetary N-body Simulations with Non-Newtonian Forces and High Number of Particles

    Full text link
    We present recent updates and improvements of the graphical processing unit (GPU) N-body code GENGA. Modern state-of-the-art simulations of planet formation require the use of a very high number of particles to accurately resolve planetary growth and to quantify the effect of dynamical friction. At present the practical upper limit is in the range of 30,000–60,000 fully interactive particles; possibly a little more on the latest GPU devices. While the original hybrid symplectic integration method has difficulties to scale up to these numbers, we have improved the integration method by (i) introducing higher level changeover functions and (ii) code improvements to better use the most recent GPU hardware efficiently for such large simulations. We added treatments of non-Newtonian forces such as general relativity, tidal interaction, rotational deformation, the Yarkovsky effect, and Poynting–Robertson drag, as well as a new model to treat virtual collisions of small bodies in the solar system. We added new tools to GENGA, such as semi-active test particles that feel more massive bodies but not each other, a more accurate collision handling and a real-time openGL visualization. We present example simulations, including a 1.5 billion year terrestrial planet formation simulation that initially started with 65,536 particles, a 3.5 billion year simulation without gas giants starting with 32,768 particles, the evolution of asteroid fragments in the solar system, and the planetesimal accretion of a growing Jupiter simulation. GENGA runs on modern NVIDIA and AMD GPUs

    A comprehensive study of noble gases and nitrogen in Hypatia, a diamond-rich pebble from SW Egypt

    Get PDF
    This is a follow-up study of a work by Kramers et al. (2013) on an unusual diamond-rich rock found in the SW side of the Libyan Desert Glass strewn field. This pebble, called Hypatia, is composed of almost pure carbon. Transmission Electron Microscopy and X-ray diffraction results reveal that Hypatia is made of defect-rich diamond containing lonsdaleite and deformation bands. These characteristics are compatible with an impact origin on Earth and/or in space. We analyzed concentrations and isotopic compositions of all five noble gases and nitrogen in several mg sized Hypatia samples. These data confirm that Hypatia is extra-terrestrial. The sample is rich in trapped noble gases with an isotopic composition close to the meteoritic Q component. 40Ar/36Ar ratios in individual steps are as low as 0.4. Concentrations of cosmic-ray produced 21Ne correspond to a nominal cosmic-ray exposure age of ca. 0.1 Myr if produced in a typical m-sized meteoroid. Such an atypically low nominal exposure age suggests high shielding in a considerably larger body. In addition to the Xe-Q composition, an excess of radiogenic 129Xe (from the decay of extinct 129I) is observed (129Xe/132Xe = 1.18 +/- 0.03). Two N components are present, an isotopically heavy component ({\delta}15N = +20 permil) released at low temp. and a major light component ({\delta}15N = -110 permil) at higher temp. This disequilibrium in N suggests that the diamonds in Hypatia were formed in space. Our data are broadly consistent with concentrations and isotopic compositions of noble gases in at least three different types of carbon-rich meteoritic materials. However, Hypatia does not seem to be related to any of these materials, but may have sampled a similar cosmochemical reservoir. Our study does not confirm the presence of exotic noble gases that led Kramers et al. to propose that Hypatia is a remnant of a comet that impacted the Earth

    The solar particle event on 10-13 September 2017 – Spectral reconstruction and calculation of the radiation exposure in aviation and space

    Get PDF
    The solar energetic particle event on 10 September 2017 and on the following days was the strongest event in recent years. It was recorded as Ground Level Enhancement 72 by Neutron Monitors Stations on the Earth and measured by a number of instruments in space. One aspect of such a space weather event is the potentially increased radiation exposure in aviation and space. Numerical simulations can help estimate the elevated dose rates during the event; a critical aspect in these simulations is the description of the primary particle spectrum. In this work, we present 1 hour averaged proton spectra during the event derived from GOES measurements and described by two different analytic functions. The derived proton spectra are used to calculate the radiation exposure in aviation and different space scenarios: low-Earth orbit, interplanetary space, and Mars surface and the results are discussed in the context of available experimental data. While the results indicate that in most of these scenarios in aviation and space the event was of little relevance compared to the total exposure from galactic cosmic radiation, the skin dose in a lightly shielded environment in interplanetary space may have reached about 30% to 60% of the NASA 30-day dose limit
    • …
    corecore