20 research outputs found

    A Standardized Ecosystem Classification for the Coordination and Design of Long-term Terrestrial Ecosystem Monitoring in Arctic-Subarctic Biomes

    Get PDF
    A Canadian Arctic-Subarctic Biogeoclimatic Ecosystem Classification (CASBEC) is proposed as a standardized classification approach for Subarctic and Arctic terrestrial ecosystems across Canada and potentially throughout the circumpolar area. The CASBEC is grounded in long-standing terrestrial ecosystem classification theory and builds on concepts developed for ecosystems in British Columbia, Quebec, and Yukon. The fundamental classification unit of the CASBEC, the plant association, is compatible with the lower-level classifications of the Arctic Vegetation Classification (AVC), the Canadian National Vegetation Classification (CNVC), and the United States National Vegetation Classification (USNVC) and is used to generate a classification and nomenclature for Arctic and Subarctic terrestrial ecological communities. The use of a multi-scalar ecosystem framework, such as that developed by the British Columbia Biogeoclimatic Ecosystem Classification, provides an ecological context to use classified plant associations to delineate and define climatically equivalent regional scale climate units (biogeoclimatic subzones) and ecologically equivalent local-scale site units within biogeoclimatic subzones. A standardized framework and taxonomy of ecosystem classification for Subarctic and Arctic terrestrial ecological communities will facilitate the planning, coordination, and applicability of terrestrial ecological monitoring and research. The CASBEC classification and high-resolution ecosystem mapping are being used to develop an effective experimental design, to select ecosite types for long-term monitoring, and to extrapolate results to landscape scales in the Experimental and Reference Area of the Canadian High Arctic Research Station (CHARS) in Cambridge Bay. Widespread adoption of the CASBEC could provide a spatial and functionally scalable framework and a common language for interpreting, integrating, coordinating, and communicating Arctic and Subarctic monitoring, research, and land management activities across the Canadian North and around the circumpolar area.Une classification biogéoclimatique arctique et subarctique canadienne (Canadian Arctic-Subarctic Biogeoclimatic Ecosystem Classification, ou CASBEC) est proposée en tant que méthode de classification standardisée pour les écosystèmes terrestres arctiques et subarctiques pancanadiens, et peut-être même pour les écosystèmes de la région circumpolaire. CASBEC s’appuie sur une théorie de classification des écosystèmes terrestres de longue date et sur des concepts mis au point pour les écosystèmes de la Colombie-Britannique, du Québec et du Yukon. L’unité de classification fondamentale de CASBEC, soit l’association végétale, est compatible avec les classifications de niveau inférieur de la classification de la végétation de l’Arctique (Arctic Vegetation Classification, ou AVC), de la Classification nationale de la végétation du Canada (CNVC) et de la classification nationale de la végétation des États-Unis (USNVC). Elle permet de produire une classification et une nomenclature pour les communautés écologiques terrestres arctiques et subarctiques. Le recours à un cadre écosystémique multiscalaire, comme celui élaboré par la classification écosystémique biogéoclimatique de la Colombie-Britannique, fournit un contexte écologique permettant d’utiliser les associations végétales classifiées pour délimiter et définir les unités climatiques régionales à l’échelle climatiquement équivalentes (sous-zones biogéoclimatiques) et les unités écologiquement équivalentes de sites d’envergure locale à l’intérieur des sous-zones biogéoclimatiques. La mise en place d’une taxonomie et d’un cadre standardisés de classification des écosystèmes des communautés écologiques terrestres arctiques et subarctiques facilitera la planification, la coordination et l’applicabilité des travaux de surveillance et de recherche écologique terrestre. La classification CASBEC et la cartographie des écosystèmes en haute résolution sont employées pour mettre au point une conception expérimentale efficace, pour sélectionner des types d’écosites à des fins de surveillance à long terme ainsi que pour extrapoler les résultats à l’échelle des paysages dans la zone d’expérimentation et de référence de la Station canadienne de recherche dans l’Extrême-Arctique (SCREA) à Cambridge Bay. L’adoption de CASBEC à grande échelle pourrait fournir un cadre spatial et fonctionnellement extensible de même qu’un langage commun pour interpréter, intégrer, coordonner et communiquer les activités de surveillance, de recherche et de gestion des terres arctiques et subarctiques à la grandeur du Nord canadien et de l’ensemble de la région circumpolaire

    Accelerator experiments with soft protons and hyper-velocity dust particles: application to ongoing projects of future X-ray missions

    Full text link
    We report on our activities, currently in progress, aimed at performing accelerator experiments with soft protons and hyper-velocity dust particles. They include tests of different types of X-ray detectors and related components (such as filters) and measurements of scattering of soft protons and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper-velocity dust tests respectively. We present the experimental set-up adopted to perform the tests, status of the activities and some very preliminary results achieved at present time.Comment: Proceedings of SPIE, Vol. 8443, Paper No. 8443-24, 201

    EcoVeg: a new approach to vegetation description and classification

    Get PDF
    A vegetation classification approach is needed that can describe the diversity of terrestrial ecosystems and their transformations over large time frames, span the full range of spatial and geographic scales across the globe, and provide knowledge of reference conditions and current states of ecosystems required to make decisions about conservation and resource management. We summarize the scientific basis for EcoVeg, a physiognomic-floristic-ecological classification approach that applies to existing vegetation, both cultural (planted and dominated by human processes) and natural (spontaneously formed and dominated by nonhuman ecological processes). The classification is based on a set of vegetation criteria, including physiognomy (growth forms, structure) and floristics (compositional similarity and characteristic species combinations), in conjunction with ecological characteristics, including site factors, disturbance, bioclimate, and biogeography. For natural vegetation, the rationale for the upper levels (formation types) is based on the relation between global-scale vegetation patterns and macroclimate, hydrology, and substrate. The rationale for the middle levels is based on scaling from regional formations (divisions) to regional floristic-physiognomic types (macrogroup and group) that respond to meso-scale biogeographic, climatic, disturbance, and site factors. Finally, the lower levels (alliance and association) are defined by detailed floristic composition that responds to local to regional topo-edaphic and disturbance gradients. For cultural vegetation, the rationale is similar, but types are based on distinctive vegetation physiognomy and floristics that reflect human activities. The hierarchy provides a structure that organizes regional/continental vegetation patterns in the context of global patterns. A formal nomenclature is provided, along with a descriptive template that provides the differentiating criteria for each type at all levels of the hierarchy. Formation types have been described for the globe; divisions and macrogroups for North America, Latin America and Africa; groups, alliances and associations for the United States, parts of Canada, Latin America and, in partnership with other classifications that share these levels, many other parts of the globe
    corecore