105 research outputs found

    Transcriptome and Physiological Analyses for Revealing Genes Involved in Wheat Response to Endoplasmic Reticulum Stress.

    Get PDF
    BACKGROUND: Wheat production is largely restricted by adverse environmental stresses. Under many undesirable conditions, endoplasmic reticulum (ER) stress can be induced. However, the physiological and molecular responses of wheat to ER stress remain poorly understood. We used dithiothreitol (DTT) and tauroursodeoxycholic acid (TUDCA) to induce or suppress ER stress in wheat cells, respectively, with the aim to reveal the molecular background of ER stress responses using a combined approach of transcriptional profiling and morpho-physiological characterization. METHODS: To understand the mechanism of wheat response to ER stress, three wheat cultivars were used in our pre-experiments. Among them, the cultivar with a moderate stress tolerance, Yunong211 was used in the following experiments. We used DTT (7.5 mM) to induce ER stress and TUDCA (25 μg·mL RESULTS: Morpho-physiological results showed DTT significantly reduced plant height and biomass, decreased contents of chlorophyll and water, increased electrolyte leakage rate and antioxidant enzymes activity, and accelerated the cell death ratio, whereas these changes were all remarkably alleviated after TUDCA co-treatment. Therefore, RNA sequencing was performed to determine the genes involved in regulating wheat response to stress. Transcriptomic analysis revealed that 8204 genes were differentially expressed in three treatment groups. Among these genes, 158 photosynthesis-related genes, 42 antioxidant enzyme genes, 318 plant hormone-related genes and 457 transcription factors (TFs) may play vital roles in regulating wheat response to ER stress. Based on the comprehensive analysis, we propose a hypothetical model to elucidate possible mechanisms of how plants adapt to environmental stresses. CONCLUSIONS: We identified several important genes that may play vital roles in wheat responding to ER stress. This work should lay the foundations of future studies in plant response to environmental stresses

    Trade in factor income and the US-China trade balance

    Get PDF
    Numerous the US multinational enterprises sold considerable amounts of products, which were “made” in China or third countries, to China’s domestic consumers, but these sales were not counted as the US exports to China. We propose a beyond-border-type measure, “trade in factor income,” that defines the US-owned factor-income induced by China’s final demand as the US export to China. Based on this measure, we find that the conventional cross-border trade statistics averagely leads to 17.4-32.0% overestimation of the US-China trade deficit (2005-2016). Our new measure helps a great transformation of trade measures from the territory-based “made in” label to income-based “created by” label

    Early-onset Alzheimer’s disease with depression as the first symptom: a case report with literature review

    Get PDF
    BackgroundAlzheimer’s disease is a common neurodegenerative disease, and patients with early-onset Alzheimer’s disease (onset age < 65 years) often have atypical symptoms, which are easily misdiagnosed and missed. Multimodality neuroimaging has become an important diagnostic and follow-up method for AD with its non-invasive and quantitative advantages.Case presentationWe report a case of a 59-year-old female with a diagnosis of depression at the age of 50 after a 46-year-old onset and a 9-year follow-up observation, who developed cognitive dysfunction manifested by memory loss and disorientation at the age of 53, and eventually developed dementia. Combined with neuropsychological scales (MMSE and MOCA scores decreased year by year and finally reached the dementia criteria) and the application of multimodal imaging. MRI showed that the hippocampus atrophied year by year and the cerebral cortex was extensively atrophied. 18F-FDG PET image showed hypometabolism in right parietal lobes, bilateral frontal lobes, bilateral joint parieto-temporal areas, and bilateral posterior cingulate glucose metabolism. The 18F-AV45 PET image showed the diagnosis of early-onset Alzheimer’s disease was confirmed by the presence of Aβ deposits in the cerebral cortex.ConclusionEarly-onset Alzheimer’s disease, which starts with depression, often has atypical symptoms and is prone to misdiagnosis. The combination of neuropsychological scales and neuroimaging examinations are good screening tools that can better assist in the early diagnosis of Alzheimer’s disease.Graphical Abstrac

    AoBck1 and AoMkk1 Are Necessary to Maintain Cell Wall Integrity, Vegetative Growth, Conidiation, Stress Resistance, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys oligospora

    Get PDF
    The cell wall integrity (CWI) pathway is composed of three mitogen-activated protein kinases (MAPKs), Bck1, Mkk1/2, and Slt2, and is one of the main signaling pathways for fungal pathogenesis, cell wall synthesis, and integrity maintenance. In this study, we characterized orthologs of Saccharomyces cerevisiae Bck1 and Mkk1 in the nematode-trapping (NT) fungus Arthrobotrys oligospora by multiple phenotypic comparison, and the regulation of conidiation and cell wall synthesis was analyzed using real-time PCR (RT-PCR). Both ΔAoBck1 and ΔAoMkk1 mutants showed severe defects in vegetative growth, cell nucleus number, and stress resistance. Both the mutants were unable to produce spores, and the transcription of several genes associated with sporulation and cell wall biosynthesis was markedly downregulated during the conidiation stage. Further, cell walls of the ΔAoBck1 and ΔAoMkk1 mutants were severely damaged, and the Woronin body failed to respond to cellular damage. In particular, the mutants lost the ability to produce mycelial traps for nematode predation. Taken together, AoBck1 and AoMkk1 play a conserved role in mycelial growth and development, CWI, conidiation, multi-stress tolerance, trap formation, and pathogenicity. We highlighted the role of AoBck1 and AoMkk1 in regulating the Woronin body response to cellular damage and cell nucleus development in A. oligospora

    Three-peak evolution characteristics of supporting stress on a super-long working face in a thick coal seam

    Get PDF
    Increasing working face length is the development trend of intelligent and efficient longwall fully mechanized mining. By combining field measurement and theoretical calculation, change characteristics of the frequency, peak value, and range of weighting in a long working face in a 1000 m-deep shaft of Kouzidong Coal Mine (Fuyang City, Anhui Province, China) were studied. Based on the mechanical model of the hydraulic support group of the elastic independent support, force characteristics and posture change characteristics of the support in the 121304 working face of the mine were studied and analyzed. The supporting stress characteristics of the deep super-long working face were revealed, and the theoretical calculation was in good agreement with the actual measurement. Based on the aforementioned model, support parameters and control technology of the 140502 working face were studied. The results show that as the length of the working face increases, the supporting stress gradually transforms from a single peak to multiple peaks and expands to both ends of the working face. The weighting in different areas of the working face is characterized by an obvious time sequence and great difference in intensity. When the working face length is 300 m, the multi-peak characteristic of super-long working faces appears. The M-shaped three-peak characteristic can be used as the criterion for super-long working faces. A reasonable working face length should be determined by comprehensively considering occurrence conditions of coal seams, working face parameter, and equipment ability. According to the different attributes of hydraulic supports in space and function and combining with zonal characteristics of the long working face, the criterion for the super-long working face and the principle of zonal cooperative control of hydraulic support groups were revealed. In addition, a cooperative control method of equipment groups in the working face based on the state error and cost functions was put forward, and the three-level cooperative control strategy and implementation method were formulated. It can effectively guide the equipment group in the super-long fully mechanized working face in deep thick coal seams to achieve optimal coordinated control

    Osmotic Stress Induced Cell Death in Wheat Is Alleviated by Tauroursodeoxycholic Acid and Involves Endoplasmic Reticulum Stress–Related Gene Expression

    Get PDF
    Although, tauroursodeoxycholic acid (TUDCA) has been widely studied in mammalian cells because of its role in inhibiting apoptosis, its effects on plants remain almost unknown, especially in the case of crops such as wheat. In this study, we conducted a series of experiments to explore the effects and mechanisms of action of TUDCA on wheat growth and cell death induced by osmotic stress. Our results show that TUDCA: (1) ameliorates the impact of osmotic stress on wheat height, fresh weight, and water content; (2) alleviates the decrease in chlorophyll content as well as membrane damage caused by osmotic stress; (3) decreases the accumulation of reactive oxygen species (ROS) by increasing the activity of antioxidant enzymes under osmotic stress; and (4) to some extent alleviates osmotic stress–induced cell death probably by regulating endoplasmic reticulum (ER) stress–related gene expression, for example expression of the basic leucine zipper genes bZIP60B and bZIP60D, the binding proteins BiP1 and BiP2, the protein disulfide isomerase PDIL8-1, and the glucose-regulated protein GRP94. We also propose a model that illustrates how TUDCA alleviates osmotic stress–related wheat cell death, which provides an important theoretical basis for improving plant stress adaptation and elucidates the mechanisms of ER stress–related plant osmotic stress resistance

    Fc gamma receptor IIb in tumor-associated macrophages and dendritic cells drives poor prognosis of recurrent glioblastoma through immune-associated signaling pathways

    Get PDF
    Background: Among central nervous system tumors, glioblastoma (GBM) is considered to be the most destructive malignancy. Recurrence is one of the most fatal aspects of GBM. However, the driver molecules that trigger GBM recurrence are currently unclear.Methods: The mRNA expression data and clinical information of GBM and normal tissues were collected from the Chinese Glioma Genome Atlas The Cancer Genome Atlas (TCGA), and REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT) cohorts. The DESeq2 R package was used to identify the differentially expressed genes between primary and recurrent GBM. ClueGO, Kyoto Encyclopedia of Genes and Genomes (KEGG), Biological Process in Gene ontology (GO-BP), and the Protein ANalysis THrough Evolutionary Relationships (PANTHER) pathway analyses were performed to explore the enriched signaling pathways in upregulated DEGs in recurrent GBM. A gene list that contained potential oncogenes that showed a significant negative correlation with patient survival from The Cancer Genome Atlas was used to further screen driver candidates for recurrent GBM. Univariate Cox proportional hazards regression analyses were used to investigate the risk score for the mRNA expression of the candidates. Single-cell RNA sequencing (scRNA-Seq) analyses were used to determine the cell type-specific distribution of Fc gamma receptor II b (FcÎłRIIb) in GBM. Immunohistochemistry (IHC) was used to confirm the FcÎłRIIb-positive cell populations in primary and paired recurrent GBM.Results: Through DEG analysis and overlap analysis, a total of 10 genes that are upregulated in recurrent GBM were screened. Using validation databases, FcÎłRIIb was identified from the 10 candidates that may serve as a driver for recurrent GBM. FCGR2B expression, not mutation, further showed a highly negative correlation with the poor prognosis of patients with recurrent GBM. Furthermore, scRNA-Seq analyses revealed that tumor-associated macrophage- and dendritic cell-specific FCGR2B was expressed. Moreover, FcÎłRIIb also showed a strong positive correlation coefficient with major immune-associated signaling pathways. In clinical specimens, FcÎłRIIb-positive cell populations were higher in recurrent GBM than in primary GBM.Conclusion: This study provides novel insights into the role of FcÎłRIIb in recurrent GBM and a promising strategy for treatment as an immune therapeutic target

    Expression of the Inhibitory Receptor TIGIT Is Up-Regulated Specifically on NK Cells With CD226 Activating Receptor From HIV-Infected Individuals

    Get PDF
    Natural killer (NK) cells are important for maintenance of innate immune system stability and serve as a first line of defense against tumors and virus infections; they can act either directly or indirectly and are regulated via co-operation between inhibitory and stimulatory surface receptors. The recently reported inhibitory receptor, TIGIT, can be expressed on the NK cell surface; however, the expression level and function of TIGIT on NK cells during HIV infection is unknown. In this study, for the first time, we investigated the expression and function of TIGIT in NK cells from HIV-infected individuals. Our data demonstrate that the level of TIGIT is higher on NK cells from patients infected with human immunodeficiency virus (HIV) compared with HIV-negative healthy controls. TIGIT expression is inversely correlated with CD4+ T cell counts and positively correlated with plasma viral loads. Additionally, levels of the TIGIT ligand, CD155, were higher on CD4+ T cells from HIV-infected individuals compared with those from healthy controls; however, there was no difference in the level of the activating receptor, CD226, which recognizes the same ligands as TIGIT. Furthermore, TIGIT was found to specifically up-regulated on CD226+ NK cells in HIV-infected individuals, and either rIL-10, or rIL-12 + rIL-15, could induce TIGIT expression on these cells. In addition, high TIGIT expression inhibited the production of interferon-gamma (IFN-Îł) by NK cells, while TIGIT inhibition restored IFN-Îł production. Overall, these results highlight the important role of TIGIT in NK cell function and suggest a potential new avenue for the development of therapeutic strategies toward a functional cure for HIV

    Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features

    Get PDF
    Leaf area index (LAI) is an essential indicator for crop growth monitoring and yield prediction. Real-time, non-destructive, and accurate monitoring of crop LAI is of great significance for intelligent decision-making on crop fertilization, irrigation, as well as for predicting and warning grain productivity. This study aims to investigate the feasibility of using spectral and texture features from unmanned aerial vehicle (UAV) multispectral imagery combined with machine learning modeling methods to achieve maize LAI estimation. In this study, remote sensing monitoring of maize LAI was carried out based on a UAV high-throughput phenotyping platform using different varieties of maize as the research target. Firstly, the spectral parameters and texture features were extracted from the UAV multispectral images, and the Normalized Difference Texture Index (NDTI), Difference Texture Index (DTI) and Ratio Texture Index (RTI) were constructed by linear calculation of texture features. Then, the correlation between LAI and spectral parameters, texture features and texture indices were analyzed, and the image features with strong correlation were screened out. Finally, combined with machine learning method, LAI estimation models of different types of input variables were constructed, and the effect of image features combination on LAI estimation was evaluated. The results revealed that the vegetation indices based on the red (650 nm), red-edge (705 nm) and NIR (842 nm) bands had high correlation coefficients with LAI. The correlation between the linearly transformed texture features and LAI was significantly improved. Besides, machine learning models combining spectral and texture features have the best performance. Support Vector Machine (SVM) models of vegetation and texture indices are the best in terms of fit, stability and estimation accuracy (R2 = 0.813, RMSE = 0.297, RPD = 2.084). The results of this study were conducive to improving the efficiency of maize variety selection and provide some reference for UAV high-throughput phenotyping technology for fine crop management at the field plot scale. The results give evidence of the breeding efficiency of maize varieties and provide a certain reference for UAV high-throughput phenotypic technology in crop management at the field scale
    • …
    corecore