26 research outputs found

    Effects of Luteolin on Distribution and Metabolism of 2-Aminofluorene in Male Sprague-Dawley Rats

    Get PDF
    [[abstract]]The effects of oral luteolin on the N-acetylation and metabolism of 2-aminofluorene (AF) in vivo were investigated in bladder, blood, colon, kidney, liver, feces, urine, cerebrum, cerebellum and pineal gland from male Sprague-Dawley rats. Major metabolites such as AAF 1-OH-AAF, 3-OH-AAF, 8-OH-AAF and 9-OH-AAF were found in bladder tissues; AAF, 1-OH-AAF, 5-OH-AAF and 8-OH-AAF were found in blood samples; AAF, 1-OH-AAF 3-OH-AAF 5-OH-AAF, 8-OH-AAF and 9-OH-AAF were found in colon tissues; AAF, 1-OH-AAF, 3-OH-AAF and 9-OH-AAF were found in kidney tissues; AAF 1-OH-AAF, 3-OH-AAF and 8-OH-AAF were found in liver tissues, AAF 1-OH-AAF, 3-OH-AAF, 5-OH-AAF, 7-OH-AAF, 8-OH-AA and 9-OH-AAF were found in feces and urine samples;AAF, 1-OH-AAF, 3-OH-AAF and 8-OH-AAF were found in cerebrum tissues; AAF, 1-OH-AAF, 3-OH-AAF and 7-OH-AAF were found in cerebellum tissues; but only AF and AAF were found in pineal gland in rats treated with AF (50 mg/kg) for 24 h. Pretreatment of rats with luteolin (30 mg/kg) 24 h prior to the administration of AF (50 mg/kg) and luteolin given with AF concomitantly led to a decrease in the amounts of 3-OH-AAF and 9-OH-AAF and an increase in the amounts Of 1-OH-AAF and 8-OH-AAF in bladder tissues. In blood samples, there were significant decreases of AAF, I 1-OH-AAF and 8-OH-AAF after rats were treated with luteolin for 24 It prior to AF but luteolin with AF at the same time caused an increase in 1-OH-AAF. In colon tissues, there were significant decreases of AF, 1-OH-AAF, 3-OH-AAF, 5-OH-AAF and 9-OH-AAF after rats were treated with luteolin for 24 h then AF but the amounts of AF, 1-OH-AAF, 5-OH-AAF and 9-OH-AAF decreased and AAF and 8-OH-AAF increased in rats treated with luteolin and AF at the same time. In kidney tissues, there were significant decreases of AF, AAF and 3-OH-AAF after rats were treated with both compounds at the same time, but luteolin for 24 h then AF treatment led to significant decreases of 3-OH-AAF. In liver samples, after rats were treated with luteolin and AF at the same time, the amounts of AAF and 1-OH-AAF significantly decreased but 8-OH-AAF increased. However, rats treated with luteolin for 24 It then with AF led to significant decreases of AAF, I 1-OH-AAF and 3-OH-AAF. In feces samples, there were significant increases of AAF, 3-OH-AAF, 7-OH-AAF, 8-OH-AAF and 9-OH-AAF after rats were treated with both compounds at the same time but luteolin for 24 It then AF treatment led to a significant increase of AF, 1-OH-AAF and 8-OH-AAF and a decrease AAF and 3-OH-AAF. In urine samples, there were significant increases of AF, AAF, 1-OH-AAF, 3-OH-AAF, 5-OH-AAF and 9-OH-AAF but a decrease of 8-OH-AAF after rats were treated with both compounds at the same time. However, the luteolin for 24 It then AF treatment led to significant increases of AF, AAF and 1-OH-AAF but decreases of 3-OH-AAF and 5-OH-AAF. In cerebrum samples, there were significant increases of AF but decreases of 1-OH-AAF and 8-OH-AAF after rats were treated with both compounds at the same time; luteolin for 24 h then AF treatment of rats led to significant increase of I 1-OH-AAF and decreases AF AAF and 8-OH-AAF. In cerebellum samples, there were significant increases of AAF and decreases of 1-OH-AAF and 3-OH-AAF after rats were treated with both compounds at the same time, there is a significant increase of AAF but decrease of 1-OH-AAF, 3-OH-AAF and 7-OH-AAF after the luteolin treated for 24 h then AF were treated to the rats. In pineal gland samples, there were significant increases of AAF after rats were treated with both compounds at th same time. However, luteolin treated for 24 h then AF were treated to the rats which increase AAF but decrease AF

    S-allylcysteine Improves Blood Flow Recovery and Prevents Ischemic Injury by Augmenting Neovasculogenesis.

    Get PDF
    Studies suggest that a low level of circulating human endothelial progenitor cells (EPCs) is a risk factor for ischemic injury and coronary artery disease (CAD). Consumption of S-allylcysteine (SAC) is known to prevent CAD. However, the protective effects of SAC on the ischemic injury are not yet clear. In this study, we examined whether SAC could improve blood flow recovery in ischemic tissues through EPC-mediated neovasculogenesis. The results demonstrate that SAC significantly enhances the neovasculogenesis of EPCs in vitro. The molecular mechanisms for SAC enhancement of neovasculogenesis include the activation of Akt/endothelial nitric oxide synthase signaling cascades. SAC increased the expression of c-kit, β-catenin, cyclin D1, and Cyclin-dependent kinase 4 (CDK4) proteins in EPCs. Daily intake of SAC at dosages of 0.2 and 2 mg/kg body weight significantly enhanced c-kit protein levels in vivo. We conclude that dietary consumption of SAC improves blood flow recovery and prevents ischemic injury by inducing neovasculogenesis in experimental models

    Genetic polymorphisms of DNA double strand break gene Ku70 and gastric cancer in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background and aim</p> <p>The DNA repair gene <it>Ku70</it>, an important member of non-homologous end-joining repair system, is thought to play an important role in the repairing of DNA double strand breaks. It is known that defects in double strand break repair capacity can lead to irreversible genomic instability. However, the polymorphic variants of <it>Ku70</it>, have never been reported about their association with gastric cancer susceptibility.</p> <p>Methods</p> <p>In this hospital-based case-control study, the associations of <it>Ku70 </it>promoter T-991C (rs5751129), promoter G-57C (rs2267437), promoter A-31G (rs132770), and intron 3 (rs132774) polymorphisms with gastric cancer risk in a Taiwanese population were investigated. In total, 136 patients with gastric cancer and 560 age- and gender-matched healthy controls recruited from the China Medical Hospital in Taiwan were genotyped.</p> <p>Results</p> <p>As for <it>Ku70 </it>promoter T-991C, the ORs after adjusted by age and gender of the people carrying TC and CC genotypes were 2.41 (95% CI = 1.53-3.88) and 3.21 (95% CI = 0.96-9.41) respectively, compared to those carrying TT wild-type genotype. The <it>P </it>for trend was significant (<it>P </it>< 0.0001). In the dominant model (TC plus CC versus TT), the association between <it>Ku70 </it>promoter T-991C polymorphism and the risk for gastric cancer was also significant (adjusted OR = 2.48, 95% CI = 1.74-3.92). When stratified by age and gender, the association was restricted to those at the age of 55 or elder of age (TC vs TT: adjusted OR = 2.52, 95% CI = 1.37-4.68, <it>P </it>= 0.0139) and male (TC vs TT: adjusted OR = 2.58, 95% CI = 1.33-4.47, <it>P </it>= 0.0085). As for the other three polymorphisms, there was no difference between both groups in the distributions of their genotype frequencies.</p> <p>Conclusion</p> <p>In conclusion, the <it>Ku70 </it>promoter T-991C (rs5751129), but not the <it>Ku70 </it>promoter C-57G (rs2267437), promoter A-31G (rs132770) or intron 3 (rs132774), is associated with gastric cancer susceptibility. This polymorphism may be a novel useful marker for gastric carcinogenesis.</p

    Predictive role of XRCC5/XRCC6 genotypes in digestive system cancers

    No full text
    Cancers are a worldwide concern; oral, esophageal and gastrointestinal cancers represent important causes of cancer-related mortality and contribute to a significant burden of human health. The DNA repair systems are the genome caretakers, playing a critical role in the initiation and progression of cancers. However, the association between the genomic variations of DNA repair genes and cancer susceptibility is not well understood. This review focuses on the polymorphic genotypes of the non-homologous end-joining DNA repair system, highlighting the role of two genes of this pathway, XRCC5 and XRCC6, in the susceptibility to digestive system cancers and discussing their potential contributions to personalized medicine

    Effects of Pre-Germinated Brown Rice on Blood Glucose and Lipid Levels in Free-Living Patients with Impaired Fasting Glucose or Type 2 Diabetes

    No full text
    White rice (WR) is made by polishing brown rice (BR) and has lost various nutrients; however, most people prefer it to BR, maybe because of the hardness of BR. Pre-germinated brown rice (PGBR) improves the problem of BR. It is made by soaking BR kernels in water to germinate and becomes softer than BR. In this study we compared the effects of WR and PGBR on blood glucose and lipid concentrations in the impaired fasting glucose (IFG) or type 2 diabetes patients. Six men and 5 women with impaired fasting glucose (IFG) or type 2 diabetes were randomly allocated to 6wk on WR or PGBR diet separated by a 2wk washout interval in a crossover design. Each subject was instructed to consume 3 packs of cooked WR or PGBR (180g/pack) daily in each intervention phase. Blood samples were collected 4 times (in study weeks 0, 6, 8 and 14) for biochemical examination. Blood concentrations of fasting blood glucose, fructosamine, serum total cholesterol and triacylglycerol levels were favorably improved on the PGBR diet (p<0.01), but not on the WR diet. The present results suggest that diets including PGBR may be useful to control bl ood glucose level

    Dithiothreitol Enhanced Arsenic-Trioxide-Induced Cell Apoptosis in Cultured Oral Cancer Cells via Mitochondrial Dysfunction and Endoplasmic Reticulum Stress

    No full text
    [[abstract]]Arsenic is naturally occurring toxic metalloid and drinking As2O3 containing water are recognized to be related to increased risk of neurotoxicity, liver injury, blackfoot disease, hypertension, and cancer. On the contrary, As2O3 has been an ancient drug used in traditional Chinese medicine with substantial anticancer activities, especially in the treatment of acute promyelocytic leukemia as well as chronic wound healing. However, the cytotoxicity and detail mechanisms of As2O3 action in solid cancer cells, such as oral cancer cells, are largely unknown. In this study, we have primarily cultured four pairs of tumor and nontumor cells from the oral cancer patients and treated the cells with As2O3 alone or combined with dithiothreitol (DTT). The results showed that 0.5 μM As2O3 plus 20 μM DTT caused a significant cell death of oral cancer cells but not the nontumor cells. Also As2O3 plus DTT upregulated Bax and Bak, downregulated Bcl-2 and p53, caused a loss of mitochondria membrane potential in oral cancer cells. On the other way, As2O3 also triggered endoplasmic reticulum stress and increased the levels of glucose-regulated protein 78, calpain 1 and 2. Our results suggest that DTT could synergistically enhance the effects of As2O3 on killing oral cancer cells while nontoxic to the nontumor cells. The combination is promising for clinical practice in oral cancer therapy and worth further investigations. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 17–27, 2017

    Fermented Wheat Germ Extract Induced Cell Death and Enhanced Cytotoxicity of Cisplatin and 5-Fluorouracil on Human Hepatocellular Carcinoma Cells

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Due to the difficulties of early diagnosis, curative treatments are not available for most patients. Palliative treatments such as chemotherapy are often associated with low response rate, strong adverse effects and limited clinical benefits for patients. The alternative approaches such as fermented wheat germ extract (FWGE) with anti-tumor efficacy may provide improvements in the clinical outcome of current therapy for HCC. This study aimed to clarify antitumor efficacy of FWGE and the combination drug effect of FWGE with chemotherapeutic agents, cisplatin and 5-fluorouracil (5-Fu) in human HCC cells, HepG2, Hep3B, and HepJ5. The present study indicated that FWGE exhibited potential to suppress HepG2, Hep3B, and HepJ5 cells, with the half maximal inhibitory concentrations (IC50) of FWGE were 0.494, 0.371 and 1.524 mg/mL, respectively. FWGE also induced Poly (Adenosine diphosphate ribose) polymerase (PARP) associated cell death in Hep3B cells. Moreover, the FWGE treatment further enhanced the cytotoxicity of cisplatin in all tested HCC cells, and cytotoxicity of 5-Fu in a synergistic manner in HepJ5 cells. Collectively, the results identified the anti-tumor efficacy of FWGE in HCC cells and suggested that FWGE can be used as a supplement to effectively improve the tumor suppression efficiency of cisplatin and 5-Fu in HCC cells

    Docosahexaenoic acid inhibits the proliferation of Kras/TP53 double mutant pancreatic ductal adenocarcinoma cells through modulation of glutathione level and suppression of nucleotide synthesis.

    No full text
    The treatment of cancer cells obtained by blocking cellular metabolism has received a lot of attention recently. Previous studies have demonstrated that Kras mutation-mediated abnormal glucose metabolism would lead to an aberrant cell proliferation in human pancreatic ductal adenocarcinoma (PDAC) cells. Previous literature has suggested that consumption of fish oil is associated with lower risk of pancreatic cancer. In this study, we investigated the anti-cancer effects of docosahexaenoic acid (DHA) in human PDAC cells in vitro and in vivo. Omega-3 polyunsaturated fatty acids (PUFAs) such as DHA and eicosapentaenoic acid (EPA) significantly inhibited the proliferation of human PDAC cells. The actions of DHA were evaluated through an induction of cell cycle arrest at G1 phase and noticed a decreased expression of cyclin A, cyclin E and cyclin B proteins in HPAF-II cells. Moreover, it was found that co-treatment of DHA and gemcitabine (GEM) effectively induced oxidative stress and cell death in HPAF-II cells. Interestingly, DHA leads to an increased oxidative glutathione /reduced glutathione (GSSG/GSH) ratio and induced cell apoptosis in HPAF-II cells. The findings in the study showed that supplementation of GSH or N-Acetyl Cysteine (NAC) could reverse DHA-mediated cell death in HPAF-II cells. Additionally, DHA significantly increased cellular level of cysteine, cellular NADP/NADPH ratio and the expression of cystathionase (CTH) and SLCA11/xCT antiporter proteins in HPAF-II cells. The action of DHA was, in part, associated with the inactivation of STAT3 cascade in HPAF-II cells. Treatment with xCT inhibitors, such as erastin or sulfasalazine (SSZ), inhibited the cell survival ability in DHA-treated HPAF-II cells. DHA also inhibited nucleotide synthesis in HPAF-II cells. It was demonstrated in a mouse-xenograft model that consumption of fish oil significantly inhibited the growth of pancreatic adenocarcinoma and decreased cellular nucleotide level in tumor tissues. Furthermore, fish oil consumption induced an increment of GSSG/GSH ratio, an upregulation of xCT and CTH proteins in tumor tissues. In conclusion, DHA significantly inhibited survival of PDAC cells both in vitro and in vivo through its recently identified novel mode of action, including an increment in the ratio of GSSG/GSH and NADP/NADPH respectively, and promoting reduction in the levels of nucleotide synthesis

    Docosahexaenoic acid inhibits the proliferation of Kras/TP53 double mutant pancreatic ductal adenocarcinoma cells through modulation of glutathione level and suppression of nucleotide synthesis.

    No full text
    The treatment of cancer cells obtained by blocking cellular metabolism has received a lot of attention recently. Previous studies have demonstrated that Kras mutation-mediated abnormal glucose metabolism would lead to an aberrant cell proliferation in human pancreatic ductal adenocarcinoma (PDAC) cells. Previous literature has suggested that consumption of fish oil is associated with lower risk of pancreatic cancer. In this study, we investigated the anti-cancer effects of docosahexaenoic acid (DHA) in human PDAC cells in vitro and in vivo. Omega-3 polyunsaturated fatty acids (PUFAs) such as DHA and eicosapentaenoic acid (EPA) significantly inhibited the proliferation of human PDAC cells. The actions of DHA were evaluated through an induction of cell cycle arrest at G1 phase and noticed a decreased expression of cyclin A, cyclin E and cyclin B proteins in HPAF-II cells. Moreover, it was found that co-treatment of DHA and gemcitabine (GEM) effectively induced oxidative stress and cell death in HPAF-II cells. Interestingly, DHA leads to an increased oxidative glutathione /reduced glutathione (GSSG/GSH) ratio and induced cell apoptosis in HPAF-II cells. The findings in the study showed that supplementation of GSH or N-Acetyl Cysteine (NAC) could reverse DHA-mediated cell death in HPAF-II cells. Additionally, DHA significantly increased cellular level of cysteine, cellular NADP/NADPH ratio and the expression of cystathionase (CTH) and SLCA11/xCT antiporter proteins in HPAF-II cells. The action of DHA was, in part, associated with the inactivation of STAT3 cascade in HPAF-II cells. Treatment with xCT inhibitors, such as erastin or sulfasalazine (SSZ), inhibited the cell survival ability in DHA-treated HPAF-II cells. DHA also inhibited nucleotide synthesis in HPAF-II cells. It was demonstrated in a mouse-xenograft model that consumption of fish oil significantly inhibited the growth of pancreatic adenocarcinoma and decreased cellular nucleotide level in tumor tissues. Furthermore, fish oil consumption induced an increment of GSSG/GSH ratio, an upregulation of xCT and CTH proteins in tumor tissues. In conclusion, DHA significantly inhibited survival of PDAC cells both in vitro and in vivo through its recently identified novel mode of action, including an increment in the ratio of GSSG/GSH and NADP/NADPH respectively, and promoting reduction in the levels of nucleotide synthesis
    corecore