1,075 research outputs found
(E)-N′-[(2-Hydroxynaphthalen-1-yl)methylidene]nicotinohydrazide
In the molecule of the title compound, C17H13N3O2, the naphthyl ring system and the pyridine ring form a dihedral angle of 12.2 (3)°. An intramolecular O—H⋯N hydrogen bond generates a six-membered ring with an S(6) ring motif. This also contributes to the relative overall near planarity of the molecule [r.m.s. deviation of all 22 non-H atoms = 0.107 (5) Å]. In the crystal, molecules are linked through intermolecular N—H⋯N hydrogen bonds, forming chains along the a axis
Potential of Exosomes for the Treatment of Stroke
Stroke is the result of blockage or rupture of blood vessels in the brain and is the leading cause of death and disability in the world. Currently only a very limited number of therapeutic approaches are available for treatment of stroke patients, and the vast majority of neuroprotective agents that tested positively in pre-clinical studies failed in clinical trials. In recent years, the clinical value of the use of exosomes for stroke treatment has received widespread attention due their unique characteristics such as low immunogenicity, low toxicity and biodegradability, ability to cross the blood–brain barrier (BBB), and their important role in communication between cells. More and more evidence suggests that the secretion of exosomes is the mechanism underlying the protection induced by mesenchymal stromal cells (MSCs) after stroke. Exosomes are thought to support brain restoration and induce repairing effects, including neurovascular remodeling, and anti-apoptosis and anti-inflammatory effects. Recent reports have focused on the clinical application of exosomes as a potential drug delivery approach. This review focuses on the ability of exosomes to interrupt the stroke-induced pathologic processes of stroke, and on publications describing how to achieve more effective treatment of stroke with exosomes
Twofold Symmetry Observed in BiTe/FeTe Interfacial Superconductor
Superconducting pairing symmetry are crucial in understanding the microscopic
superconducting mechanism of a superconductor. Here we report the observation
of a twofold superconducting gap symmetry in an interfacial superconductor
BiTe/FeTe, by employing quasiparticle interference (QPI) technique
in scanning tunneling microscopy and macroscopic magnetoresistance
measurements. The QPI patterns corresponding to energies inside and outside the
gap reveal a clear anisotropic superconducting gap. Furthermore, both the
in-plane angle-dependent magnetoresistance and in-plane upper critical field
exhibit a clear twofold symmetry. This twofold symmetry align with the Te-Te
direction in FeTe, which weakens the possible generation by bi-collinear
antiferromagnetism order. Our finding provides key information in further
understanding of the topological properties in BiTe/FeTe
superconducting system and propels further theoretical interests in the paring
mechanism in the system
The cross-reactivity of the enterovirus 71 to human brain tissue and identification of the cross-reactivity related fragments
<p>Abstract</p> <p>Background</p> <p>EV71 occasionally cause a series of severe neurological symptoms, including aseptic meningitis, encephalitis, and poliomyelitis-like paralysis. However, the neurological destruction mechanism was remained to be clarified. This study described the cross reaction between EV71 induced IgG and human brain tissue.</p> <p>Results</p> <p>Cross reaction of the IgG from 30 EV71 infected patients' sera to human tissues of cerebra was observed, which suggested that some EV71 antigens could induce IgG cross-reactivity to human cerebra. To identify the regions of EV71 virus that containing above antigens, the polypeptide of virus was divided into 19 peptides by expression in prokaryotes cell. Mouse anti-sera of these peptides was prepared and applied in immunohistochemical staining with human adult and fetus brain tissue, respectively. The result indicated the 19 peptides can be classified into three groups: strong cross-reactivity, weak cross-reactivity and no cross-reactivity with human brain tissue according the cross reaction activity. Then, the increased Blood Brain Barrier (BBB) permeability and permits IgG entry in neonatal mice after EV71 infection was determined.</p> <p>Conclusion</p> <p>EV71 induced IgG could enter BBB and cross-reacted with brain tissue in EV71 infected neonatal mice, and then the peptides of EV71 that could induce cross-reactivity with brain tissue were identified, which should be avoided in future vaccine designing.</p
Peroral Endoscopic Myotomy for Esophageal Achalasia by HybridKnife: A Case Report
This paper presented a case of esophageal achalasia treated by peroral endoscopic myotomy with HybridKnife and discuss the feasibility and the possible advantages of using it
Effect of Cervus and Cucumis Peptides on Osteoblast Activity and Fracture Healing in Osteoporotic Bone
Osteoporosis is associated with delayed and/or reduced fracture healing. As cervus and cucumis are the traditional Chinese treatments for rheumatoid arthritis, we investigated the effect of supplementation of these peptides (CCP) on bone fracture healing in ovariectomized (OVX) osteoporotic rats in vitro and in vivo. CCP enhanced osteoblast proliferation and increased alkaline phosphatase activity, matrix mineralization, and expression of runt-related transcription factor 2 (Runx2), bone morphogenetic protein 4 (BMP4), and osteopontin. In vivo, female Sprague-Dawley rats underwent ovariectomy and the right femora were fractured and fixed by intramedullary nailing 3 months later. Rats received intraperitoneal injections of either CCP (1.67 mg/kg) or physiological saline every day for 30 days. Fracture healing and callus formation were evaluated by radiography, micro-CT, biomechanical testing, and histology. At 12 weeks after fracture, calluses in CCP-treated bones showed significantly higher torsional strength and greater stiffness than control-treated bones. Bones in CCP-treated rats reunified and were thoroughly remodeled, while two saline-treated rats showed no bone union and incomplete remodeling. Taken together, these results indicate that use of CCP after fracture in osteoporotic rats accelerates mineralization and osteogenesis and improves fracture healing
Association of the Healthy Dietary Index 2020 and its components with chronic respiratory disease among U.S. adults
BackgroundChronic respiratory disease is an important public health problem in the United States and globally. Diet, an important part of a healthy lifestyle, is also relevant to chronic respiratory health. We aimed to explore the relationship between overall dietary quality and the risk of chronic respiratory disease (CRD), include chronic bronchitis (CB), emphysema and asthma.MethodA total of 4,499 United States adults were extracted from the National Health and Nutrition Examination Survey (NHANES) in 2017–2018. Diet quality was assessed using 2 day, 24 h dietary recall data and quantified as the Healthy Diet Index (HEI)-2020 score. Binary logistic regression models, restricted cubic splines (RCS) and generalized additive modeling (GAM), the weighted quartile sum (WQS) and qgcom models were used to assess the relationship between HEI-2020 scores and risk of CB, emphysema and asthma.ResultsHigh HEI-2020 scores are associated with low risk of chronic respiratory disease (CB: 0.98, 0.97–0.99; emphysema: 0.98, 0.97–0.99; asthma: 0.98, 0.97–0.99) and consistent results across different dietary variable categorization (Tertile: CB: 0.58, 0.42–0.81; asthma: 0.51, 0.35–0.74; Quartile: CB: 0.57, 0.34–0.97; asthma: 0.56, 0.36–0.86) and different weighting models. Negative dose-response relationship between dietary quality and risk of chronic respiratory disease also shown in RCS and GAM models. The WQS and qgcom models also showed a healthy mixing effect of dietary components on respiratory disease, with high-quality proteins, vegetables, and fruits making the heaviest contributions.ConclusionHigher HEI-2020 scores were associated with lower risk of CB, emphysema, and asthma. Following Dietary Guidelines for Americans 2020–2025 could support enhanced respiratory health
Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif
Very long chain fatty acids are important components of plant lipids, suberins, and cuticular waxes. Trans-2-enoyl-CoA reductase (ECR) catalyses the fourth reaction of fatty acid elongation, which is NADPH dependent. In the present study, the expression of two cotton ECR (GhECR) genes revealed by quantitative RT-PCR analysis was up-regulated during cotton fibre elongation. GhECR1 and 2 each contain open reading frames of 933 bp in length, both encoding proteins consisting of 310 amino acid residues. GhECRs show 32% identity to Saccharomyces cerevisiae Tsc13p at the deduced amino acid level, and the GhECR genes were able to restore the viability of the S. cerevisiae haploid tsc13-deletion strain. A putative non-classical NADPH-binding site in GhECR was predicted by an empirical approach. Site-directed mutagenesis in combination with gas chromatography–mass spectrometry analysis suggests that G(5X)IPXG presents a putative novel NADPH-binding motif of the plant ECR family. The data suggest that both GhECR genes encode functional enzymes harbouring non-classical NADPH-binding sites at their C-termini, and are involved in fatty acid elongation during cotton fibre development
- …