Twofold Symmetry Observed in Bi2_{2}Te3_{3}/FeTe Interfacial Superconductor

Abstract

Superconducting pairing symmetry are crucial in understanding the microscopic superconducting mechanism of a superconductor. Here we report the observation of a twofold superconducting gap symmetry in an interfacial superconductor Bi2_{2}Te3_{3}/FeTe, by employing quasiparticle interference (QPI) technique in scanning tunneling microscopy and macroscopic magnetoresistance measurements. The QPI patterns corresponding to energies inside and outside the gap reveal a clear anisotropic superconducting gap. Furthermore, both the in-plane angle-dependent magnetoresistance and in-plane upper critical field exhibit a clear twofold symmetry. This twofold symmetry align with the Te-Te direction in FeTe, which weakens the possible generation by bi-collinear antiferromagnetism order. Our finding provides key information in further understanding of the topological properties in Bi2_{2}Te3_{3}/FeTe superconducting system and propels further theoretical interests in the paring mechanism in the system

    Similar works

    Full text

    thumbnail-image

    Available Versions