5,999 research outputs found

    Distribution of Spectral Lags in Gamma Ray Bursts

    Full text link
    Using the data acquired in the Time To Spill (TTS) mode for long gamma-ray bursts (GRBs) collected by the Burst and Transient Source Experiment on board the Compton Gamma Ray Observatory (BATSE/CGRO), we have carefully measured spectral lags in time between the low (25-55 keV) and high (110-320 keV) energy bands of individual pulses contained in 64 multi-peak GRBs. We find that the temporal lead by higher-energy gamma-ray photons (i.e., positive lags) is the norm in this selected sample set of long GRBs. While relatively few in number, some pulses of several long GRBs do show negative lags. This distribution of spectral lags in long GRBs is in contrast to that in short GRBs. This apparent difference poses challenges and constraints on the physical mechanism(s) of producing long and short GRBs. The relation between the pulse peak count rates and the spectral lags is also examined. Observationally, there seems to be no clear evidence for systematic spectral lag-luminosity connection for pulses within a given long GRB.Comment: 20 pages, 4 figure

    Almost Sure Frequency Independence of the Dimension of the Spectrum of Sturmian Hamiltonians

    Full text link
    We consider the spectrum of discrete Schr\"odinger operators with Sturmian potentials and show that for sufficiently large coupling, its Hausdorff dimension and its upper box counting dimension are the same for Lebesgue almost every value of the frequency.Comment: 12 pages, to appear in Commun. Math. Phy

    Improved lattice QCD with quarks: the 2 dimensional case

    Get PDF
    QCD in two dimensions is investigated using the improved fermionic lattice Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved theory leads to a significant reduction of the finite lattice spacing errors. The quark condensate and the mass of lightest quark and anti-quark bound state in the strong coupling phase (different from t'Hooft phase) are computed. We find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures

    Dressed Polyakov loop and flavor dependent phase transitions

    Full text link
    The chiral condensate and dressed Polyakov loop at finite temperature and density have been investigated in the framework of Nf = 2+1 Nambu-Jona-Lasinio (NJL) model with two degenerate u, d quarks and one strange quark. In the case of explicit chiral symmetry breaking with physical quark masses, it is found that the phase transitions for light u, d quarks and s quark are sequentially happened, and the separation between the transition lines for different flavors becomes wider and wider with the increase of baryon density. For each flavor, the pseudo-critical temperatures for chiral condensate and dressed Polyakov loop differ in a narrow transition range in the lower baryon density region, and the two transitions coincide in the higher baryon density region.Comment: 9 pages, 9 figures; Version accepted in Phys. Rev.

    The impact of admission diagnosis on gastric emptying in critically ill patients

    Get PDF
    Introduction Disturbed gastric emptying (GE) occurs commonly in critically ill patients. Admission diagnoses are believed to influence the incidence of delayed GE and subsequent feed intolerance. Although patients with burns and head injury are considered to be at greater risk, the true incidence has not been determined by examination of patient groups of sufficient number. This study aimed to evaluate the impact of admission diagnosis on GE in critically ill patients. Methods A retrospective review of patient demographics, diagnosis, intensive care unit (ICU) admission details, GE, and enteral feeding was performed on an unselected cohort of 132 mechanically ventilated patients (94 males, 38 females; age 54 ± 1.2 years; admission Acute Physiology and Chronic Health Evaluation II [APACHE II] score of 22 ± 1) who had undergone GE assessment by 13C-octanoic acid breath test. Delayed GE was defined as GE coefficient (GEC) of less than 3.20 and/or gastric half-emptying time (t50) of more than 140 minutes. Results Overall, 60% of the patients had delayed GE and a mean GEC of 2.9 ± 0.1 and t50 of 163 ± 7 minutes. On univariate analysis, GE correlated significantly with older age, higher admission APACHE II scores, longer length of stay in ICU prior to GE measurement, higher respiratory rate, higher FiO2 (fraction of inspired oxygen), and higher serum creatinine. After these factors were controlled for, there was a modest relationship between admission diagnosis and GE (r = 0.48; P = 0.02). The highest occurrence of delayed GE was observed in patients with head injuries, burns, multi-system trauma, and sepsis. Delayed GE was least common in patients with myocardial injury and non-gastrointestinal post-operative respiratory failure. Patients with delayed GE received fewer feeds and stayed longer in ICU and hospital compared to those with normal GE. Conclusion Admission diagnosis has a modest impact on GE in critically ill patients, even after controlling for factors such as age, illness severity, and medication, which are known to influence this function.Nam Q Nguyen, Mei P Ng, Marianne Chapman, Robert J Fraser and Richard H Hollowa

    In-Depth Characterization of Endo-Lysosomal Aβ in Intact Neurons

    Get PDF
    Amyloid-beta (Aβ) peptides are produced within neurons. Some peptides are released into the brain parenchyma, while others are retained inside the neurons. However, the detection of intracellular Aβ remains a challenge since antibodies against Aβ capture Aβ and its precursor proteins (i.e., APP and C99). To overcome this drawback, we recently developed 1) the C99 720-670 biosensor for recording γ-secretase activity and 2) a unique multiplexed immunostaining platform that enables the selective detection of intracellular Aβ with subcellular resolution. Using these new assays, we showed that C99 is predominantly processed by γ-secretase in late endosomes and lysosomes, and intracellular Aβ is enriched in the same subcellular loci in intact neurons. However, the detailed properties of Aβ in the acidic compartments remain unclear. Here, we report using fluorescent lifetime imaging microscopy (FLIM) that intracellular Aβ includes both long Aβ intermediates bound to γ-secretase and short peptides dissociated from the protease complex. Surprisingly, our results also suggest that the dissociated Aβ is bound to the glycoproteins on the inner membrane of lysosomes. Furthermore, we show striking cell-to-cell heterogeneity in intracellular Aβ levels in primary neurons and APP transgenic mouse brains. These findings provide a basis for the further investigation of the role(s) of intracellular Aβ and its relevance to Alzheimer’s disease (AD)

    Impact of collimator leaf width and treatment technique on stereotactic radiosurgery and radiotherapy plans for intra- and extracranial lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluated the dosimetric impact of various treatment techniques as well as collimator leaf width (2.5 vs 5 mm) for three groups of tumors – spine tumors, brain tumors abutting the brainstem, and liver tumors. These lesions often present challenges in maximizing dose to target volumes without exceeding critical organ tolerance. Specifically, this study evaluated the dosimetric benefits of various techniques and collimator leaf sizes as a function of lesion size and shape.</p> <p>Methods</p> <p>Fifteen cases (5 for each site) were studied retrospectively. All lesions either abutted or were an integral part of critical structures (brainstem, liver or spinal cord). For brain and liver lesions, treatment plans using a 3D-conformal static technique (3D), dynamic conformal arcs (DARC) or intensity modulation (IMRT) were designed with a conventional linear accelerator with standard 5 mm leaf width multi-leaf collimator, and a linear accelerator dedicated for radiosurgery and hypofractionated therapy with a 2.5 mm leaf width collimator. For the concave spine lesions, intensity modulation was required to provide adequate conformality; hence, only IMRT plans were evaluated using either the standard or small leaf-width collimators.</p> <p>A total of 70 treatment plans were generated and each plan was individually optimized according to the technique employed. The Generalized Estimating Equation (GEE) was used to separate the impact of treatment technique from the MLC system on plan outcome, and t-tests were performed to evaluate statistical differences in target coverage and organ sparing between plans.</p> <p>Results</p> <p>The lesions ranged in size from 2.6 to 12.5 cc, 17.5 to 153 cc, and 20.9 to 87.7 cc for the brain, liver, and spine groups, respectively. As a group, brain lesions were smaller than spine and liver lesions. While brain and liver lesions were primarily ellipsoidal, spine lesions were more complex in shape, as they were all concave. Therefore, the brain and the liver groups were compared for volume effect, and the liver and spine groups were compared for shape. For the brain and liver groups, both the radiosurgery MLC and the IMRT technique contributed to the dose sparing of organs-at-risk(OARs), as dose in the high-dose regions of these OARs was reduced up to 15%, compared to the non-IMRT techniques employing a 5 mm leaf-width collimator. Also, the dose reduction contributed by the fine leaf-width MLC decreased, as dose savings at all levels diminished from 4 – 11% for the brain group to 1 – 5% for the liver group, as the target structures decreased in volume. The fine leaf-width collimator significantly improved spinal cord sparing, with dose reductions of 14 – 19% in high to middle dose regions, compared to the 5 mm leaf width collimator.</p> <p>Conclusion</p> <p>The fine leaf-width MLC in combination with the IMRT technique can yield dosimetric benefits in radiosurgery and hypofractionated radiotherapy. Treatment of small lesions in cases involving complex target/OAR geometry will especially benefit from use of a fine leaf-width MLC and the use of IMRT.</p

    Equivalence of conservation laws and equivalence of potential systems

    Full text link
    We study conservation laws and potential symmetries of (systems of) differential equations applying equivalence relations generated by point transformations between the equations. A Fokker-Planck equation and the Burgers equation are considered as examples. Using reducibility of them to the one-dimensional linear heat equation, we construct complete hierarchies of local and potential conservation laws for them and describe, in some sense, all their potential symmetries. Known results on the subject are interpreted in the proposed framework. This paper is an extended comment on the paper of J.-q. Mei and H.-q. Zhang [Internat. J. Theoret. Phys., 2006, in press].Comment: 10 page

    ACBD3 functions as a scaffold to organize the Golgi stacking proteins and a Rab33b-GAP

    Get PDF
    Golgin45 plays important roles in Golgi stack assembly and is known to bind both the Golgi stacking protein GRASP55 and Rab2 in the medial‐Golgi cisternae. In this study, we sought to further characterize the cisternal adhesion complex using a proteomics approach. We report here that Acyl‐CoA binding domain containing 3 (ACBD3) is likely to be a novel binding partner of Golgin45. ACBD3 interacts with Golgin45 via its GOLD domain, while its co‐expression significantly increases Golgin45 targeting to the Golgi. Furthermore, ACBD3 recruits TBC1D22, a Rab33b GTPase activating protein (GAP), to a large multi‐protein complex containing Golgin45 and GRASP55. These results suggest that ACBD3 may provide a scaffolding to organize the Golgi stacking proteins and a Rab33b‐GAP at the medial‐Golgi
    corecore