We study conservation laws and potential symmetries of (systems of)
differential equations applying equivalence relations generated by point
transformations between the equations. A Fokker-Planck equation and the Burgers
equation are considered as examples. Using reducibility of them to the
one-dimensional linear heat equation, we construct complete hierarchies of
local and potential conservation laws for them and describe, in some sense, all
their potential symmetries. Known results on the subject are interpreted in the
proposed framework. This paper is an extended comment on the paper of J.-q. Mei
and H.-q. Zhang [Internat. J. Theoret. Phys., 2006, in press].Comment: 10 page