11,176 research outputs found

    Hybrid mesons from anisotropic lattice QCD with the clover and improved gauge actions

    Full text link
    We study hybrid mesons from the clover and improved gauge actions at β=2.6\beta=2.6 on the anisotropic 123×3612^3\times36 lattice using our PC cluster. We estimate the mass of 1−+1^{-+} light quark hybrid as well as the mass of the charmonium hybrid. The improvement of both quark and gluonic actions, first applied to the hybrid mesons, is shown to be more efficient in reducing the lattice spacing and finite volume errors.Comment: Lattice2002 (spectrum

    Exotic mesons from quantum chromodynamics with improved gluon and quark actions on the anisotropic lattice

    Full text link
    Hybrid (exotic) mesons, which are important predictions of quantum chromodynamics (QCD), are states of quarks and anti-quarks bound by excited gluons. First principle lattice study of such states would help us understand the role of ``dynamical'' color in low energy QCD and provide valuable information for experimental search for these new particles. In this paper, we apply both improved gluon and quark actions to the hybrid mesons, which might be much more efficient than the previous works in reducing lattice spacing error and finite volume effect. Quenched simulations were done at β=2.6\beta=2.6 and on a ξ=3\xi=3 anisotropic 123×3612^3\times36 lattice using our PC cluster. We obtain 2013±26±712013 \pm 26 \pm 71 MeV for the mass of the 1−+1^{-+} hybrid meson qˉqg{\bar q}qg in the light quark sector, and 4369±37±994369 \pm 37 \pm 99Mev in the charm quark sector; the mass splitting between the 1−+1^{-+} hybrid meson cˉcg{\bar c}c g in the charm quark sector and the spin averaged S-wave charmonium mass is estimated to be 1302±37±991302 \pm 37 \pm 99 MeV. As a byproduct, we obtain 1438±32±571438 \pm 32 \pm 57 MeV for the mass of a P-wave 1++1^{++} uˉu{\bar u}u or dˉd{\bar d}d meson and 1499±28±651499 \pm 28 \pm 65 MeV for the mass of a P-wave 1++1^{++} sˉs{\bar s}s meson, which are comparable to their experimental value 1426 MeV for the f1(1420)f_1(1420) meson. The first error is statistical, and the second one is systematical. The mixing of the hybrid meson with a four quark state is also discussed.Comment: 12 pages, 3 figures. Published versio

    Infection Spreading and Source Identification: A Hide and Seek Game

    Full text link
    The goal of an infection source node (e.g., a rumor or computer virus source) in a network is to spread its infection to as many nodes as possible, while remaining hidden from the network administrator. On the other hand, the network administrator aims to identify the source node based on knowledge of which nodes have been infected. We model the infection spreading and source identification problem as a strategic game, where the infection source and the network administrator are the two players. As the Jordan center estimator is a minimax source estimator that has been shown to be robust in recent works, we assume that the network administrator utilizes a source estimation strategy that can probe any nodes within a given radius of the Jordan center. Given any estimation strategy, we design a best-response infection strategy for the source. Given any infection strategy, we design a best-response estimation strategy for the network administrator. We derive conditions under which a Nash equilibrium of the strategic game exists. Simulations in both synthetic and real-world networks demonstrate that our proposed infection strategy infects more nodes while maintaining the same safety margin between the true source node and the Jordan center source estimator

    Identifying Infection Sources and Regions in Large Networks

    Full text link
    Identifying the infection sources in a network, including the index cases that introduce a contagious disease into a population network, the servers that inject a computer virus into a computer network, or the individuals who started a rumor in a social network, plays a critical role in limiting the damage caused by the infection through timely quarantine of the sources. We consider the problem of estimating the infection sources and the infection regions (subsets of nodes infected by each source) in a network, based only on knowledge of which nodes are infected and their connections, and when the number of sources is unknown a priori. We derive estimators for the infection sources and their infection regions based on approximations of the infection sequences count. We prove that if there are at most two infection sources in a geometric tree, our estimator identifies the true source or sources with probability going to one as the number of infected nodes increases. When there are more than two infection sources, and when the maximum possible number of infection sources is known, we propose an algorithm with quadratic complexity to estimate the actual number and identities of the infection sources. Simulations on various kinds of networks, including tree networks, small-world networks and real world power grid networks, and tests on two real data sets are provided to verify the performance of our estimators

    One-Pot Synthesis of Chiral Organometallic Complexes

    Get PDF
    Currently, organometallic complexes involving ligand oxazolines are typically obtained in two sequential steps, where the free ligand is given firstly from a functionalized nitrile by condensation reaction with an amino alcohol in the presence of a Lewis or Bronsted acid catalyst, followed by a further coordination with metal salts to obtain the corresponding oxazolinyl metal complexes. Usually, the yield of the two-step procedure is relatively low; considering that metal oxazoline complexes often contain Lewis acidic metals, it is possible that the two steps may be telescoped. A series of novel chiral organometallic complexes (1–23) were assembled in a single step from nitriles, chiral D/L amino alcohols, and a stoichiometric amount of metal salts (MCl2·nH2O/M(OAc)2·nH2O), with moderate to high yields (20–95%). All the crystalline compounds were fully characterized by NMR, IR, MS, and X-ray analyses

    Lifshitz holographic superconductor in Horava-Lifshitz gravity

    Get PDF
    We study the holographic phase transition of superconductor dual to a Lifshitz black brane probed by an anisotropic scalar field in the probe limit in Ho\u{r}ava-Lifshitz gravity. With the use of numerical and analytical method, we investigate how the critical temperature of the condensation is affected by the Lifshitz exponent zz, α−\alpha-correction term in the action as well as the dimensions of the gravity. We also numerically explore the condensation of the dual operator and optical conductivity of the holographic system. Various interesting properties of the holographic condensation affected by the parameters of model are discussed
    • …
    corecore