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We study the holographic phase transition of superconductor dual to a Lifshitz black brane probed by 
an anisotropic scalar field in the probe limit in Hořava–Lifshitz gravity. With the use of numerical and 
analytical method, we investigate how the critical temperature of the condensation is affected by the 
Lifshitz exponent z, α-correction term in the action as well as the dimensions of the gravity. We also 
numerically explore the condensation of the dual operator and optical conductivity of the holographic 
system. Various interesting properties of the holographic condensation affected by the parameters of 
model are discussed.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The gauge/gravity duality [1–4] that relates strongly interacting 
gauge theories to theories of gravity in higher dimensions has at-
tracted increasing attention in recent years. It has opened a new 
window to study many different strongly interacting systems due 
to its remarkable feature that it relates a strong coupling QFT to 
a weak coupling gravitational theory. For this reason this dual-
ity has received considerable interest in modeling strongly coupled 
physics, in particular with a view to possible applications to con-
densed matter physics (see [5–7] for reviews).

One of the unsolved mysteries in modern condensed matter 
physics is the mechanism of the high Tc superconductors. In a 
series studies [8,9], Gubser proposed a model where the Abelian 
Higgs model is coupled to gravity with a negative cosmological 
constant. In this model there are solutions that spontaneously 
break the Abelian gauge symmetry via a charged complex scalar 
condensate near the horizon of the black hole. This model ex-
hibits the key properties of superconductivity: a phase transition 
at a critical temperature, where a spontaneous symmetry breaking 
of a U(1) gauge symmetry in the bulk gravitational theory corre-
sponds to a broken global U(1) symmetry on the boundary, and 
the formation of a charged condensate. Based on this observation, 
a holographic superconductor model was proposed by considering 
a neutral black hole with a charged scalar and Maxwell sector that 
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do not back react on the geometry [10,11]. Since then this cor-
respondence has received considerable considerations in order to 
understand several crucial properties of these holographic super-
conductors (see Ref. [12] for reviews).

On the other hand, anisotropic scaling plays a fundamental role 
in quantum phase transitions in condensed matter [13,14]. Indeed, 
many behaviors of the condensed matter systems are governed by 
Lifshitz-like fixed points. These fixed points are characterized by 
the anisotropic scaling symmetry

t → λzt, xi → λxi, (1)

where z is called the dynamical critical exponent and it describes 
the degree of anisotropy between space and time. A natural gen-
eralization of the gauge/gravity duality is the holographic descrip-
tion of QFTs without the conformal invariance. Such attempts were 
initiated in [15], where, motivated by fermions at unitarity, holo-
graphic duals to Galilean conformal field theories with Schrödinger 
symmetry was considered. Latter similar theories with Lifshitz 
symmetry were proposed in [16] where it was shown that nonrel-
ativistic QFTs that describe multicritical points in certain magnetic 
materials and liquid crystals may be dual to certain nonrelativis-
tic gravitational theories in the Lifshitz space–time background,1

that is

ds2 = −r2zdt2 + dr2

r2
+ r2dx2

i , (i = 1, . . .d). (2)

1 Generalization to theories with hyperscaling violation is possible [17,18]. For a 
recent progress, please see Refs. [19–32] for an incomplete list.
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Recently Hořava suggested that anisotropic scaling even plays 
a significant role in quantum gravity itself. Starting with the 
anisotropic scaling (1), he proposed a power-counting renormal-
izable theory of gravity, the so-called Hořava–Lifshitz (HL) theory 
[33,34]. The theory is based on the perspective that Lorentz sym-
metry should appear as an emergent symmetry at long distances, 
but can be fundamentally absent at short ones [35,36]. In the UV, 
the system exhibits a strong anisotropic scaling between space and 
time with z � D ,2 while at the IR, high-order curvature corrections 
become negligible, and the Lorentz invariance (with z = 1) is ex-
pected to be restored.

Since the HL gravity is itself anisotropic between space and 
time, it is natural to expect that the HL gravity provides a mini-
mal holographic dual for nonrelativistic Lifshitz-type field theories. 
Recent progress confirmed this speculation. In [37] it was shown 
that the Lifshitz spacetime (2) is a vacuum solution of the HL grav-
ity in (2 + 1) dimensions and that the full structure of the z = 2
anisotropic Weyl anomaly can be reproduced in dual field theories, 
while its minimal relativistic gravity counterpart yields only one of 
two independent central charges in the anomaly. Our recent works 
[38,39] found further evidence to support the above speculation. 
In particular, we found all the static (diagonal) solutions of the HL 
gravity in any dimensions and showed that they give rise to very 
rich space–time structures: the corresponding space–times include 
BTZ-like black holes, the Lifshitz space–times, or Lifshitz solitons.

In this paper, we shall propose a holographic model for super-
conductors in Lifshitz background in HL gravity. The holographic 
superconductor in the HL gravity has been explored in [40]. How-
ever, the holographic superconductor in Lifshitz black hole in the 
HL gravity has not been considered before. Since the model ex-
hibits anisotropic scaling not only in black hole background, but 
also in the gravity theory itself, one may expect that there should 
have some different behaviors in this model. Indeed, our results 
show that comparing to the Schwarzschild case [40], Lifshitz expo-
nent will hinder the condensation of the second operator to occur, 
namely, it corresponds to lower critical temperature. While the 
rule is irregular for the first operator, because the condensation 
of the first operator tends to divergence as one lower the temper-
ature, which is not the typicality in real superconductor. Related 
to the second operator, the energy gap, described by the vanishing 
real part of conductivity, is also harder to open in the field the-
ory dual to the Lifshitz black hole. Meanwhile, we will also show 
that the additional α-coupling term makes the scalar hair easier to 
form, which is the same as that found in Schwarzschild case.

The organization of this paper is as follows: in section 2, we 
construct our model and give a brief introduction of the back-
ground geometry. In section 3, we give a detailed calculations on 
the condensations and the critical temperature. In order to check 
our numerical results, we also perform analytic calculations. In 
section 4, the optical conductivity is calculated numerically. Some 
interesting results obtained there. In the last section, we present 
our main conclusions.

2. Holographic setup and equations of motion

In order to show the non-relativistic property in Hořava–Lifshitz 
gravity, it is more convenient to employ the Arnowitt–Deser–
Misner metric formalism

ds2 = −N2dt2 + gij(dxi − Nidt)(dx j − N jdt), (3)

2 One should be careful that z here should not be confused with that one in the 
metric (2).
where N , Ni and gij are the lapse function, the shift vector and 
the metric of the spacelike hypersurface, respectively. The non-
relativistic matters including complex scalar and electromagnetic 
fields in Hořava–Lifshitz (HL) gravity was firstly proposed in [41,
42]. Later, with the aim to study the holographic superconductor 
dual to this gravity, the Lagrangian of matters with the lowest or-
der is generalized in [40] as

S =
∫

dt dxd+1N
√

g

(
1

4
L1 + 2L2

)
, (4)

L1 = 2

N2
gij(F0i − Fki Nk)(F0 j − F� j N

�) − Fij F i j

− β0 − β1ai Bi − β2 Bi Bi,

L2 = 1

2N2
|∂tψ − iq A0ψ − Ni(∂iψ − iq Aiψ)|2

−
(

1

2
− α

)
|∂ψ − iq Aiψ |2 − 1

2
V (|ψ |) ,

where ai and βi are coupling constants of the scalar and gauge 
fields. When ai = βi = 0, the above action with the metric (3) will 
reproduce the minimal coupling action in the pioneer work [10]
with the potential V (|ψ |) = m2|ψ |2. In this paper we would like 
to limit to this case.

It was addressed in [43] that Schwarzschild spacetime is one 
of the solutions in Hořava–Lifshitz gravity. Recently, the authors 
of [44] proposed that the HL gravity also admits asymptotically 
Lifshitz solution

ds2 = −r2zξ(r)dt2 + dr2

r2ξ(r)
+ r2dx2

i with ξ(r) = 1 −
( r0

r

)d+z
.

(5)

It should be noted that the dynamic exponent z should not be 
confused with the one inherent in this theory. The temperature of 
this black brane is given by Th = d+z

4π rz
0.

In Einstein gravity, the Lifshitz dynamic exponent plays an in-
teresting role in the condensation of holographic superconductor 
[45–47]. Thus, it is interesting to see the effect in Hořava–Lifshitz 
gravity and generalize the holographic superconductor study dual 
to Schwarzschild black brane [40] into the Lifshitz brane (5).

Similarly, we take the ansatz of matters as Aμ = (φ(r), 0, 0, 0)

and ψ = ψ(r). In the probe limit, we directly variate the action 
and obtain the equations of motion for the matter fields as

0 = φ′′ + d + 1 − z

r
φ′ − 2ψ2

r2ξ(r)
φ, (6)

0 = ψ ′′ +
(

z + d + 1

r
+ ξ ′(r)

ξ(r)

)
ψ ′

+
(

2

r2ξ(r)
+ φ2

r2z+2ξ2(r)(1 − 2α)

)
ψ, (7)

where we have substituted the metric (5) and set the mass param-
eter as m2 = −2 + 4α.

Consequently, we can study the boundary behavior of the mat-
ter fields. Near the horizon, r → r0, the scalar field satisfies the 
relation ψ(r0) = − d+z

2 ψ(r0)
′ , while the U(1) gauge field can be set 

to be φ(r0) = 0 due to the regularity near horizon.
Near the boundary, i.e., r → ∞, the behavior of φ is

φ = μ − ρ

rd−z
+ · · · for d �= z, (8)

φ = μ − ρ log r + · · · for d = z.
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Fig. 1. Condensation with d = 2, z = 1.5 for different α: dotted line for α = 0, dashed line for α = 0.2 and solid line for α = 0.4.

Fig. 2. Condensation with d = 3, z = 2 for different α: dotted line for α = 0, dashed line for α = 0.2 and solid line for α = 0.4.
Table 1
Critical temperature Tc/ρ

z/d for < O 1 > and < O 2 > respectively with different α
for fixed d = 2 and z = 1.5. ‘N’ means that the result is numerical while ‘A’ denotes 
that it is analytical.

α < O 1 > < O 2 >

0 0.2247(N) 0.2247(A) 0.0365(N) 0.0359(A)

0.2 0.2721(N) 0.2722(A) 0.0442(N) 0.0435(A)

0.4 0.4109(N) 0.4109(A) 0.0667(N) 0.0657(A)

According to the gauge/gravity dictionary, μ and ρ in the above 
equations are dual to the chemical potential and charge density in 
the dual field theory. The boundary behavior of ψ is

ψ = ψ1

r�− + ψ2

r�+ (9)

with �± = d+z
2 ± 1

2

√
(d + z)2 − 8. Then the condensate of the 

scalar operator O in the boundary field theory, which is dual to 
the scalar field, is given by < O i >= √

2ψi . Both of them may play 
the role of source and the other denotes the expectation value 
of vacuum with dimension �+ or �− . Thus, the features of the 
boundary field theory can be read off by studying the asymptotic 
behavior of matter fields.

3. Critical temperature and condensation

In this section, we shall solve the equations (6) and (7) to ex-
tract the properties of the phase transition. We will focus on the 
critical temperature Tc where the scalar hair comes up and the 
Table 2
Critical temperature Tc/ρ

z/d for < O 1 > and < O 2 > respectively with different α
for fixed d = 3 and z = 2. ‘N’ means that the result is numerical while ‘A’ denotes 
that it is analytical.

α < O 1 > < O 2 >

0 1.6432(N) 1.6415(A) 0.0384(N) 0.0556(A)

0.2 1.9482(N) 1.9463(A) 0.0668(N) 0.0660(A)

0.4 2.8098(N) 2.8070(A) 0.0963(N) 0.0951(A)

condensation < O i >, i.e., the strength of the dual scalar oper-
ator. Specially, we mainly study the effects of α correction, Lif-
shitz dynamical exponent, and the dimensions of the gravity on Tc
and < O i >.

3.1. Numerical results

Firstly, we use shooting method to numerically solve the equa-
tions of motion from the horizon to boundary. As the temperature 
decreases below a critical value Tc , the scalar can survive, mean-
ing a phase transition from the normal black hole to a hairy black 
hole. The strength of condensation becomes large as we continue 
lowering the temperature. The numerical results are summarized 
as follows. The critical temperatures for the operators affected by 
α in asymptotical Lifshitz geometry are shown in Table 1 and Ta-
ble 2. We see that in both dimensions d = 2 and d = 3, larger 
α corresponds to higher critical temperature, namely, it makes 
the condensation easier to occur. The strength of condensation re-
lated to the parameters in the tables can be found in Fig. 1 and 
Fig. 2. The positive α term correction brings in stronger condensa-
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Fig. 3. Condensation with d = 2 and α = 0: dotted line (z = 1), dashed line (z = 1.5), solid line (z = 2).

Fig. 4. In this figure we can find three lines with d = 3,α = 0.2: dotted line (z = 1), dashed line (z = 1.5), solid line (z = 2).
Table 3
Critical temperature Tc/ρ

z/d for < O 1 > and < O 2 > respectively with d = 2 and 
α = 0 for different z. ‘N’ means that the result is numerical while ‘A’ denotes that 
it is analytical.

z < O 1 > < O 2 >

1 0.2255(N) 0.2249(A) 0.1184(N) 0.1170(A)

1.5 0.2246(N) 0.2247(A) 0.0365(N) 0.0359(A)

2 0.6645(N) 0.6645(A) 0.0289(N) 0.0284(A)

Table 4
Critical temperature Tc/ρ

z/d for < O 1 > and < O 2 > respectively with d = 3 and 
α = 0.2 for different z. ‘N’ means that the result is numerical while ‘A’ denotes that 
it is analytical.

z < O 1 > < O 2 >

1 1.5693(N) 1.5690(A) 0.2012(N) 0.1987(A)

1.5 2.1579(N) 2.1563(A) 0.1315(N) 0.1299(A)

2 1.9482(N) 1.9463(A) 0.0668(N) 0.0660(A)

tion. These phenomenons are consistent with that observed in AdS 
background in Hor̆ava–Lifshitz gravity [40].

We move on to study the effects of the Lifshitz dynamical expo-
nent z on the phase transition. The critical temperatures with dif-
ferent z for fixed dimension and α are listed in Table 3 and Table 4. 
In both cases, the critical temperature for < O 2 > becomes lower 
as z increases, meaning that larger z makes the condensation dif-
ficult to form. Accordingly, the condensation < O 2 > for larger z is 
weaker as shown in Fig. 3 and Fig. 4. The related results are con-
sistent with the effect of Lifshitz case observed in [46]. Namely, 
for the second operator, the condensation is always harder to oc-
cur in the field theory dual to Lifshitz black hole than that dual 
to Schwarzschild black hole in HL gravity. However, for the oper-
ator < O 1 >, the effect of z on the critical temperature and the 
condensation are irregular. The reason is not clear, but it may at-
tribute to that the first operator does not have a good dual because 
the condensation is tending to be divergent when the temperature 
is lowered, as it discussed in [11].

3.2. Analytical results

In this subsection we would like to further confirm our numer-
ical critical temperature with the use of Sturm–Liouville method 
which was first proposed to calculate Tc in holographic in [48]. 
It is worthy noting that this proposal works well in many cases 
[49–52].

For simpleness, we now redefine the coordinate y = r0/r, then 
the above field equations (6) and (7) become

ψ ′′(y) + z + d − 1 + yd+z

y(−1 + yd+z)
ψ ′(y)

+
(

2

y2(1 − yd+z)
+ y2zφ2

y2r2z
0 (−1 + yd+z)2(1 − 2α)

)
ψ(y) = 0,

(10)

φ′′(y) + 1 + z − d
φ′(y) + 2ψ2

2 d+z
φ(y) = 0, (11)
y y (−1 + y )
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where 0 < y � 1, and y = 1 is the location of the horizon while 
y = 0 denotes the boundary.

Near the boundary (y → 0), we have the asymptotic behaviors 
for the fields as

ψ ≈ ψ(±) y�± (12)

while

φ ≈ μ − ρ yd−z for d − z > 0 and φ ≈ μ + ρ log y for d − z = 0.

(13)

Note that at the horizon y = 1, we have the behavior ψ(1) =
− d+z

2 ψ(1)′ and φ(1) = 0 as we analyzed in Section 2.
At the critical temperature Tc , ψ = 0, then the Maxwell equa-

tion becomes

φ′′(y) + 1 + z − d

y
φ′(y) = 0, (14)

whose solution is

φ(y) = λrz
0(1 − yd−z) for d − z > 0, (15)

φ(y) = λrd
0 log y for d − z = 0 (16)

where λ is defined as λ = ρ/rd
0.

Sequently, as the system approach the critical point, i.e., 
T → Tc , the field equation for the scalar field ψ becomes

ψ ′′ +
(

1 − d − z

y
− (d + z)yd+z−1

(1 − yd+z)

)
ψ ′

+
(

y2z−2λ2(1 − yd−z)2

(1 − 2α)(1 − yd+z)2
+ 2

y2(1 − yd+z)

)
ψ = 0, (17)

for d − z > 0, while, for d − z = 0, it becomes

ψ ′′ +
(

1 − d − z

y
− (d + z)yd+z−1

(1 − yd+z)

)
ψ ′

+
(

y2z−2λ2(log y)2

(1 − 2α)(1 − yd+z)2
+ 2

y2(1 − yd+z)

)
ψ = 0. (18)

At the boundary, we define

ψ(y) = < O >√
2r�

0

y� F (y), (19)

where F (y) is normalized to F (0) = 1 and the boundary condition 
F ′(0) = 0. Hereafter, for d − z > 0, the equation of motion for the 
scalar is

F ′′ +
(

1 + 2� − d − z

y
+ (d + z)yd+z−1

−1 + yd+z

)
F ′ +

(
�2 yd+z−2

−1 + yd+z

)
F

= − y2z−2λ2(1 − yd−z)2

(1 − 2α)(−1 + yd+z)2
F , (20)

and for d − z = 0, it is

F ′′ +
(

1 + 2� − d − z

y
+ (d + z)yd+z−1

−1 + yd+z

)
F ′ +

(
�2 yd+z−2

−1 + yd+z

)
F

= − y2z−2λ2(log y)2

(1 − 2α)(−1 + yd+z)2
F . (21)

The above two equations for the function F can be converted into

(T (y)F ′)′ − [P (y) − λ2 Q (y)]F = 0, (22)

w

or

be

λ2

In
ch

F (

Th
pr
cr

Tc

gr

λ2

β

cr
ca
all
in
ta
va

4. 

pe
fo

A′
x

Ne
Ne

Ax

No
et
co
Su
du
as
here

T (y) = y2�+1−d−z(1 − yd+z),

P (y) = �2 y2�−1 (23)

Q (y) = y2�−1−d+z (1 − yd−z)2

(1 − yd+z)(1 − 2α)
for d − z > 0, (24)

Q (y) = y2�−1−d+z (log y)2

(1 − yd+z)(1 − 2α)
for d − z = 0. (25)

With the use of Sturm–Liouville theory, the eigenvalue of λ can 
 found as the minimum value of

=
∫ 1

0 dy[T (y)F ′ 2(y) + P (y)F 2(y)]∫ 1
0 Q (y)F 2(y)dy

. (26)

 order to get the explicit integral result of the above formula, we 
oose

y) = 1 − β y2. (27)

en, substituting (27) into (26), we can integrate out λ2. Choosing 
oper β , we can minimize the expression and get λmin , thus, the 
itical temperature is

= d + z

4π
rz

0 = d + z

4πλ
z/d
min

ρz/d. (28)

For example, when d = 2, α = 0 and z = 1, we have the inte-
ation (26) for the first operator < O 1 >

= 6 − 6β + 10β2

2
√

3π − 6 ln 3 + 4(
√

3π + 3 ln 3 − 9)β + (12 ln 3 − 13)β2
.

(29)

≈ 0.239 minimizes the above equation, then (28) gives us the 
itical temperature Tc ≈ 0.225

√
ρ which is exact the value in AdS 

se. The analytical critical temperatures for the two operators in 
 discussed cases with different α and z are also summarized 
 the corresponding tables. After comparing the results in all the 
bles, it is obvious that the analytical results and the numerical 
lues match very well.

Optical conductivity

To calculate the optical conductivity, we should consider the 
rturbed Maxwell field Ai = δx

i e−iω t Ax(r), then Ax(r) satisfies the 
llowing equation

′ +
(

z + d − 1

r
+ ξ ′(r)

ξ(r)

)
A′

x

+
(

ω2

r2z+2ξ2(r)
− 2(1 − 2α)ψ2

r2ξ(r)

)
Ax = 0. (30)

ar the horizon, we impose the ingoing condition Ax ∝ ξ(r)
−iω
d+z . 

ar the boundary, the general solution to the fluctuation is

= A(0)
x + A(1)

x yd+z−2 + · · · . (31)

te that in some cases, such as d = z or d = 3 and z = 1, 
c., there is a logarithmic term proportional to ln(Cr) with C a 
nstant. For more details, please refer to the references [46,53]. 
bsequently, with the suitable renormalization, the optical con-
ctivity of the dual holographic superconductor, can be calculated 
 [10,53]
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Fig. 5. The conductivity at T /Tc = 0.25 with d = 2 and z = 1.5 for α = 0,0.2 and 0.4.

Fig. 6. The conductivity at T /Tc = 0.25 with d = 2 and α = 0 for z = 1,1.5 and 2.
σ(ω) = d + 3z − 4

iω

A(1)
x

A(0)
x

or

σ(ω) = d + 3z − 4

iω

A(1)
x

A(0)
x

+ iω

d + 3z − 4
. (32)

In Fig. 5 and Fig. 6, we show the real part and imaginary part 
of optical conductivity for T /Tc ≈ 0.25 in d = 2 geometry.3 More 
concretely, Fig. 5 shows that with fixed z = 1.5, larger α makes the 
gap in the real part of Re(σ ) narrower, which is consistent with 
the result for z = 1 as found in [40]. However, since the spacetime 
is Lifshitz instead of AdS, the large frequency is not scaled to be 
unit as it always occurs in Lifshitz case. With fixed α = 0, as the 
dynamical exponent z increases, the low frequency behavior of the 
real part of σ is enhanced, namely, more shift from zero, while the 
high frequency behavior is also improved, which agrees well with 
the observations in [54].

5. Conclusion and discussion

We have investigated the holographic superconductor dual to a 
Lifshitz black hole in Hořava–Lifshitz gravity. For generality, an α
correction term was introduced into the action of the matter field. 
We mainly focused on studying the effect of the α coupling and 
the Lifshitz exponent on the condensation and the optical conduc-

3 Results for d = 3 are similar.
tivity of the dual superconductor. Our main results can be summa-
rized as follows. Firstly, in Lifshitz case, the α coupling increases 
the critical temperature so as to promote the hairy scalar to form 
for both operators, and it decreases the energy gap described by 
the real part of the conductivity at lower temperature. These obser-
vations are consistent with that found in Schwarzschild case in HL 
gravity. Then, comparing to the dual AdS case, Lifshitz exponent al-
ways suppresses the second operator to condensate, while the rule 
is irregular for the first operator because it is not the typical super-
conductor due to the divergence at zero temperature limit. Related 
to the second operator, the energy gap is smaller in the field the-
ory dual to Lifshitz black hole because the asymptotical behavior 
is modified.

In this work, we ignored the backreaction of matter fields into 
the gravity and study in the probe limit. It is interesting to take 
the backreaction into account and check the properties obtained in 
the present paper. Without loss of generality, generalization of this 
work to the fermionic case is possible. It is expected that fermionic 
sector may exhibit much more fruitful structures in this context, 
especially the phase transition disclosed in [55]. Moreover, it is 
also interesting to study the formation of the crystalline geome-
tries [56] in the present context, to see which configuration of the 
lattice tends to form.
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Lifshitz gravity, Class. Quantum Gravity 31 (2014) 095008, arXiv:1212.4190.

[45] Y. Bu, Holographic superconductors with z = 2 Lifshitz scaling, Phys. Rev. D 86 
(2012) 046007, arXiv:1211.0037.

[46] J.W. Lu, Y.B. Wu, P. Qian, Y.Y. Zhao, X. Zhang, Lifshitz scaling effects on holo-
graphic superconductors, Nucl. Phys. B 887 (2014) 112, arXiv:1311.2699.

[47] S. Mahapatra, P. Phukon, T. Sarkar, Generalized superconductors and holo-
graphic optics, J. High Energy Phys. 1401 (2014) 135, arXiv:1305.6273.

[48] G. Siopsis, J. Therrien, Analytic calculation of properties of holographic super-
conductors, J. High Energy Phys. 1005 (2010) 013, arXiv:1003.4275.

[49] H.F. Li, R.G. Cai, H.Q. Zhang, Analytical studies on holographic superconductors 
in Gauss–Bonnet gravity, J. High Energy Phys. 1104 (2011) 028, arXiv:1103.
2833.

[50] J. Jing, Q. Pan, S. Chen, Holographic superconductors with Power–Maxwell field, 
J. High Energy Phys. 1111 (2011) 045, arXiv:1106.5181.

[51] S. Gangopadhyay, D. Roychowdhury, Analytic study of properties of holographic 
superconductors in Born–Infeld electrodynamics, J. High Energy Phys. 1205 
(2012) 002, arXiv:1201.6520.

[52] X.M. Kuang, E. Papantonopoulos, G. Siopsis, B. Wang, Building a holographic su-
perconductor with higher-derivative couplings, Phys. Rev. D 88 (2013) 086008, 
arXiv:1303.2575.

[53] X.M. Kuang, J.P. Wu, Transport coefficients from hyperscaling violating black 
brane: shear viscosity and conductivity, arXiv:1511.03008.

[54] J.R. Sun, S.Y. Wu, H.Q. Zhang, Mimic the optical conductivity in disordered 
solids via gauge/gravity duality, Phys. Lett. B 729 (2014) 177, arXiv:1306.1517.

[55] L.Q. Fang, X.M. Kuang, B. Wang, J.P. Wu, Fermionic phase transition induced 
by the effective impurity in holography, J. High Energy Phys. 1511 (2015) 134, 
arXiv:1507.03121.

[56] L.-K. Chen, H. Guo, F.-W. Shu, Crystalline geometries from fermionic vortex lat-
tice with hyperscaling violation, arXiv:1511.01370.

http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6D616C646163656E6131s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6D616C646163656E6131s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6D616C646163656E6131s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib61676D6F6Fs1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib61676D6F6Fs1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib676B70s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib676B70s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib77697474656Es1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib77697474656Es1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib686172746E6F6C6Cs1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib686172746E6F6C6Cs1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6865727A6F67s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6865727A6F67s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6D63677265657679s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6D63677265657679s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib67756273657231s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib67756273657231s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib67756273657232s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib67756273657232s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib486172746E6F6C6C3A323030387678s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib486172746E6F6C6C3A323030387678s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib486172746E6F6C6C3A323030386B78s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib486172746E6F6C6C3A323030386B78s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib63616931s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib63616931s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6361726479s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6361726479s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib73616368646576s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib73616368646576s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib736F6Es1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib736F6Es1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib736F6Es2
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib736F6Es2
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib736F6Es3
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib736F6Es3
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B6C6Ds1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B6C6Ds1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B69726974736973s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B69726974736973s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B69726974736973s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B69726974736973s2
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B69726974736973s2
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib78646F6E67s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib78646F6E67s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib78646F6E67s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib70616E7A68616E67s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib70616E7A68616E67s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6C6D78s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6C6D78s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6776s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6776s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B796Ds1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B796Ds1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B6F66696E6173s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B6F66696E6173s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib647373s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib647373s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib647373s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib656C70s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib656C70s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib66656E6767s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib66656E6767s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib666Cs1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib666Cs1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B70777731s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B70777731s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B70777731s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6C73616368646576s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6C73616368646576s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6C73616368646576s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B70777732s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B70777732s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6B70777732s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6272s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib6272s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib70647372s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib70647372s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib686F7261766131s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib686F7261766131s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib686F7261766132s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib686F7261766132s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib5450s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib434Es1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib434Es1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib686F7261766133s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib686F7261766133s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib737731s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib737731s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib737731s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib737732s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib737732s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib737732s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4C696E3A32303134627961s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4C696E3A32303134627961s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4B697269747369733A323030397278s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4B697269747369733A323030397278s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4B696D70746F6E3A323031337A62s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4B696D70746F6E3A323031337A62s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4C753A32303039656Ds1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4C753A32303039656Ds1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib416C69736861686968613A323031326979s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib416C69736861686968613A323031326979s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib42753A323031327A7A62s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib42753A323031327A7A62s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4C753A32303133747A61s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4C753A32303133747A61s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib53753A323031346768736Fs1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib53753A323031346768736Fs1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib53696F707369733A323031307571s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib53696F707369733A323031307571s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4C693A32303131786A61s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4C693A32303131786A61s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4C693A32303131786A61s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4A696E673A32303131767As1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4A696E673A32303131767As1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib47616E676F706164687961793A32303132616Ds1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib47616E676F706164687961793A32303132616Ds1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib47616E676F706164687961793A32303132616Ds1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4B75616E673A323031336F7161s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4B75616E673A323031336F7161s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4B75616E673A323031336F7161s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4B75616E673A323031356D6C66s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib4B75616E673A323031356D6C66s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib53756E3A323031337A6761s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib53756E3A323031337A6761s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib66616E676Bs1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib66616E676Bs1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib66616E676Bs1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib73687531s1
http://refhub.elsevier.com/S0370-2693(16)30231-3/bib73687531s1

	Lifshitz holographic superconductor in Hořava-Lifshitz gravity
	1 Introduction
	2 Holographic setup and equations of motion
	3 Critical temperature and condensation
	3.1 Numerical results
	3.2 Analytical results

	4 Optical conductivity
	5 Conclusion and discussion
	Acknowledgements
	References


