100 research outputs found

    Amplitude Bootstrap in (Anti) de Sitter Space And The Four-Point Graviton from Double Copy

    Full text link
    We propose studying a new representation of amputated Anti de Sitter (AdS) amplitude in Mellin Momentum space, where it encodes all the dynamical information in Cosmological Correlators. At tree level, we demonstrate that this amplitude has a similar analytic structure as the S-matrix, with residues of poles made up of on-shell lower-point amplitudes. We use this structure to bootstrap 4-point scalar amplitudes with spin-1 and spin-2 exchange. In the second part of the paper, we use double copy to construct the 4-point graviton amplitude in general dimension. This leads us to a novel, concise formula that exhibits the flat space structure. We also verified this formula for the case when d=3 with literature.Comment: v3: the double copy proposal improved, with new graviton dilaton interaction predicte

    Bootstrapping Witten diagrams via differential representation in Mellin space

    Get PDF
    We explore the use of the differential representation of AdS amplitudes to compute Witten diagrams. The differential representation expresses AdS amplitudes in terms of conformal generators acting on contact Witten diagrams, which allows us to construct differential equations for Witten diagrams. These differential equations can then be transformed into difference equations in Mellin space, which can be solved recursively. Using this method, we efficiently re-computed scalar four-point amplitudes and obtained new results for scalar six-point amplitudes mediated by gluons and scalars, as well as two examples of scalar eight-point amplitudes from gluon exchange

    Color/kinematics duality in AdS4

    Get PDF
    In flat space, the color/kinematics duality states that perturbative Yang-Mills amplitudes can be written in such a way that kinematic numerators obey the same Jacobi relations as their color factors. This remarkable duality implies BCJ relations for Yang-Mills amplitudes and underlies the double copy to gravitational amplitudes. In this paper, we find analogous relations for Yang-Mills amplitudes in AdS4. In particular we show that the kinematic numerators of 4-point Yang-Mills amplitudes computed via Witten diagrams in momentum space enjoy a generalised gauge symmetry which can be used to enforce the kinematic Jacobi relation away from the flat space limit, and we derive deformed BCJ relations which reduce to the standard ones in the flat space limit. We illustrate these results using compact new expressions for 4-point Yang-Mills amplitudes in AdS4 and their kinematic numerators in terms of spinors. We also spell out the relation to 3d conformal correlators in momentum space, and speculate on the double copy to graviton amplitudes in AdS4

    Stability analysis of the Eulerian-Lagrangian finite volume methods for nonlinear hyperbolic equations in one space dimension

    Full text link
    In this paper, we construct a novel Eulerian-Lagrangian finite volume (ELFV) method for nonlinear scalar hyperbolic equations in one space dimension. It is well known that the exact solutions to such problems may contain shocks though the initial conditions are smooth, and direct numerical methods may suffer from restricted time step sizes. To relieve the restriction, we propose an ELFV method, where the space-time domain was separated by the partition lines originated from the cell interfaces whose slopes are obtained following the Rakine-Hugoniot junmp condition. Unfortunately, to avoid the intersection of the partition lines, the time step sizes are still limited. To fix this gap, we detect effective troubled cells (ETCs) and carefully design the influence region of each ETC, within which the partitioned space-time regions are merged together to form a new one. Then with the new partition of the space-time domain, we theoretically prove that the proposed first-order scheme with Euler forward time discretization is total-variation-diminishing and maximum-principle-preserving with {at least twice} larger time step constraints than the classical first order Eulerian method for Burgers' equation. Numerical experiments verify the optimality of the designed time step sizes.Comment: Submitted to Mathematics of Computatio

    Graviton Trispectrum from Gluons

    Full text link
    The tree-level wavefunction coefficient for four gravitons in de Sitter space was recently bootstrapped using the Cosmological Optical Theorem, flat space limit, and Manifestly Local Test \cite{Bonifacio:2022vwa}. Inspired by the double copy for scattering amplitudes, we derive a compact new expression for this quantity starting from the wavefunction coefficient for gluons.Comment: 29 page

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    • …
    corecore