5,720 research outputs found

    Between Sense and Sensibility: Declarative narrativisation of mental models as a basis and benchmark for visuo-spatial cognition and computation focussed collaborative cognitive systems

    Full text link
    What lies between `\emph{sensing}' and `\emph{sensibility}'? In other words, what kind of cognitive processes mediate sensing capability, and the formation of sensible impressions ---e.g., abstractions, analogies, hypotheses and theory formation, beliefs and their revision, argument formation--- in domain-specific problem solving, or in regular activities of everyday living, working and simply going around in the environment? How can knowledge and reasoning about such capabilities, as exhibited by humans in particular problem contexts, be used as a model and benchmark for the development of collaborative cognitive (interaction) systems concerned with human assistance, assurance, and empowerment? We pose these questions in the context of a range of assistive technologies concerned with \emph{visuo-spatial perception and cognition} tasks encompassing aspects such as commonsense, creativity, and the application of specialist domain knowledge and problem-solving thought processes. Assistive technologies being considered include: (a) human activity interpretation; (b) high-level cognitive rovotics; (c) people-centred creative design in domains such as architecture & digital media creation, and (d) qualitative analyses geographic information systems. Computational narratives not only provide a rich cognitive basis, but they also serve as a benchmark of functional performance in our development of computational cognitive assistance systems. We posit that computational narrativisation pertaining to space, actions, and change provides a useful model of \emph{visual} and \emph{spatio-temporal thinking} within a wide-range of problem-solving tasks and application areas where collaborative cognitive systems could serve an assistive and empowering function.Comment: 5 pages, research statement summarising recent publication

    Realization of One-Way Electromagnetic Modes at the Interface Between Two Dissimilar Metals

    Full text link
    We calculate the dispersion relations for electromagnetic waves propagating at the interface between two dissimilar Drude metals in an external magnetic field B parallel to the interface. The propagating modes are bound to the inteface and travel perpendicular to B. In certain frequency ranges, the waves can propagate in one direction only. The frequency range for these one-way modes increases with increasing B. One group of modes occurs at moderate frequencies, between the lower and upper plasma frequencies of the two metals. The other occurs at much lower frequencies, between their lower and upper cyclotron frequencies. We discuss possible ways to realize such modes in real materials, including dissimilar superconductors.Comment: 10 pages, 3 figure

    Optimal Routing for the Gaussian Multiple-Relay Channel with Decode-and-Forward

    Full text link
    In this paper, we study a routing problem on the Gaussian multiple relay channel, in which nodes employ a decode-and-forward coding strategy. We are interested in routes for the information flow through the relays that achieve the highest DF rate. We first construct an algorithm that provably finds optimal DF routes. As the algorithm runs in factorial time in the worst case, we propose a polynomial time heuristic algorithm that finds an optimal route with high probability. We demonstrate that that the optimal (and near optimal) DF routes are good in practice by simulating a distributed DF coding scheme using low density parity check codes with puncturing and incremental redundancy.Comment: Accepted and to be presented at the 2007 IEEE International Symposium on Information Theory (ISIT 2007), Acropolis Congress and Exhibition Center, Nice, France, June 24-29 200

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    ROTUNDE - A Smart Meeting Cinematography Initiative: Tools, Datasets, and Benchmarks for Cognitive Interpretation and Control

    Full text link
    We construe smart meeting cinematography with a focus on professional situations such as meetings and seminars, possibly conducted in a distributed manner across socio-spatially separated groups. The basic objective in smart meeting cinematography is to interpret professional interactions involving people, and automatically produce dynamic recordings of discussions, debates, presentations etc in the presence of multiple communication modalities. Typical modalities include gestures (e.g., raising one's hand for a question, applause), voice and interruption, electronic apparatus (e.g., pressing a button), movement (e.g., standing-up, moving around) etc. ROTUNDE, an instance of smart meeting cinematography concept, aims to: (a) develop functionality-driven benchmarks with respect to the interpretation and control capabilities of human-cinematographers, real-time video editors, surveillance personnel, and typical human performance in everyday situations; (b) Develop general tools for the commonsense cognitive interpretation of dynamic scenes from the viewpoint of visuo-spatial cognition centred perceptual narrativisation. Particular emphasis is placed on declarative representations and interfacing mechanisms that seamlessly integrate within large-scale cognitive (interaction) systems and companion technologies consisting of diverse AI sub-components. For instance, the envisaged tools would provide general capabilities for high-level commonsense reasoning about space, events, actions, change, and interaction.Comment: Appears in AAAI-2013 Workshop on: Space, Time, and Ambient Intelligence (STAMI 2013

    A quantum router for high-dimensional entanglement

    Full text link
    In addition to being a workhorse for modern quantum technologies, entanglement plays a key role in fundamental tests of quantum mechanics. The entanglement of photons in multiple levels, or dimensions, explores the limits of how large an entangled state can be, while also greatly expanding its applications in quantum information. Here we show how a high-dimensional quantum state of two photons entangled in their orbital angular momentum can be split into two entangled states with a smaller dimensionality structure. Our work demonstrates that entanglement is a quantum property that can be subdivided into spatially separated parts. In addition, our technique has vast potential applications in quantum as well as classical communication systems.Comment: 5 pages, 5 figure

    Price-Based Resource Allocation for Spectrum-Sharing Femtocell Networks: A Stackelberg Game Approach

    Full text link
    This paper investigates the price-based resource allocation strategies for the uplink transmission of a spectrum-sharing femtocell network, in which a central macrocell is underlaid with distributed femtocells, all operating over the same frequency band as the macrocell. Assuming that the macrocell base station (MBS) protects itself by pricing the interference from the femtocell users, a Stackelberg game is formulated to study the joint utility maximization of the macrocell and the femtocells subject to a maximum tolerable interference power constraint at the MBS. Especially, two practical femtocell channel models: sparsely deployed scenario for rural areas and densely deployed scenario for urban areas, are investigated. For each scenario, two pricing schemes: uniform pricing and non-uniform pricing, are proposed. Then, the Stackelberg equilibriums for these proposed games are studied, and an effective distributed interference price bargaining algorithm with guaranteed convergence is proposed for the uniform-pricing case. Finally, numerical examples are presented to verify the proposed studies. It is shown that the proposed algorithms are effective in resource allocation and macrocell protection requiring minimal network overhead for spectrum-sharing-based two-tier femtocell networks.Comment: 27 pages, 7 figures, Submitted to JSA
    corecore