16,697 research outputs found

    Green's Functions and the Adiabatic Hyperspherical Method

    Get PDF
    We address the few-body problem using the adiabatic hyperspherical representation. A general form for the hyperangular Green's function in dd-dimensions is derived. The resulting Lippmann-Schwinger equation is solved for the case of three-particles with s-wave zero-range interactions. Identical particle symmetry is incorporated in a general and intuitive way. Complete semi-analytic expressions for the nonadiabatic channel couplings are derived. Finally, a model to describe the atom-loss due to three-body recombination for a three-component fermi-gas of 6^{6}Li atoms is presented.Comment: 14 pages, 8 figures, 2 table

    Numerical study of spin quantum Hall transitions in superconductors with broken time-reversal symmetry

    Full text link
    We present results of numerical studies of spin quantum Hall transitions in disordered superconductors, in which the pairing order parameter breaks time-reversal symmetry. We focus mainly on p-wave superconductors in which one of the spin components is conserved. The transport properties of the system are studied by numerically diagonalizing pairing Hamiltonians on a lattice, and by calculating the Chern and Thouless numbers of the quasiparticle states. We find that in the presence of disorder, (spin-)current carrying states exist only at discrete critical energies in the thermodynamic limit, and the spin-quantum Hall transition driven by an external Zeeman field has the same critical behavior as the usual integer quantum Hall transition of non-interacting electrons. These critical energies merge and disappear as disorder strength increases, in a manner similar to those in lattice models for integer quantum Hall transition.Comment: 9 pages, 9 figure

    Magnetic susceptibility of ultra-small superconductor grains

    Full text link
    For assemblies of superconductor nanograins, the magnetic response is analyzed as a function of both temperature and magnetic field. In order to describe the interaction energy of electron pairs for a huge number of many-particle states, involved in calculations, we develop a simple approximation, based on the Richardson solution for the reduced BCS Hamiltonian and applicable over a wide range of the grain sizes and interaction strengths at arbitrary distributions of single-electron energy levels in a grain. Our study is focused upon ultra-small grains, where both the mean value of the nearest-neighbor spacing of single-electron energy levels in a grain and variations of this spacing from grain to grain significantly exceed the superconducting gap in bulk samples of the same material. For these ultra-small superconductor grains, the overall profiles of the magnetic susceptibility as a function of magnetic field and temperature are demonstrated to be qualitatively different from those for normal grains. We show that the analyzed signatures of pairing correlations are sufficiently stable with respect to variations of the average value of the grain size and its dispersion over an assembly of nanograins. The presence of these signatures does not depend on a particular choice of statistics, obeyed by single-electron energy levels in grains.Comment: 40 pages, 12 figures, submitted to Phys. Rev. B, E-mail addresses: [email protected], [email protected], [email protected]

    Transition from Poisson to gaussian unitary statistics: The two-point correlation function

    Full text link
    We consider the Rosenzweig-Porter model of random matrix which interpolates between Poisson and gaussian unitary statistics and compute exactly the two-point correlation function. Asymptotic formulas for this function are given near the Poisson and gaussian limit.Comment: 19 pages, no figure

    Scoping the role of the nurse consultant

    Get PDF
    Project Summary Middlesex University is funded by HENCEL to undertake the following project: “Scoping the Role of the Nurse Consultant”. The project aims to provide HENCEL with a detailed review of progress of nursing research and development (R&D) being delivered through the Nurse and Midwife Consultant role across North Central and East London. This interim report covers the period from December 1st 2013 to 31st March 2014. The report considers progress of phase one and phase two

    Ethics Standards (HRPP) and Public Partnership (PARTAKE) to Address Clinical Research Concerns in India: Moving Toward Ethical, Responsible, Culturally Sensitive, and Community-Engaging Clinical Research.

    Get PDF
    Like other emerging economies, India's quest for independent, evidence-based, and affordable healthcare has led to robust and promising growth in the clinical research sector, with a compound annual growth rate (CAGR) of 20.4% between 2005 and 2010. However, while the fundamental drivers and strengths are still strong, the past few years witnessed a declining trend (CAGR -16.7%) amid regulatory concerns, activist protests, and sponsor departure. And although India accounts for 17.5% of the world's population, it currently conducts only 1% of clinical trials. Indian and international experts and public stakeholders gathered for a 2-day conference in June 2013 in New Delhi to discuss the challenges facing clinical research in India and to explore solutions. The main themes discussed were ethical standards, regulatory oversight, and partnerships with public stakeholders. The meeting was a collaboration of AAHRPP (Association for the Accreditation of Human Research Protection Programs)-aimed at establishing responsible and ethical clinical research standards-and PARTAKE (Public Awareness of Research for Therapeutic Advancements through Knowledge and Empowerment)-aimed at informing and engaging the public in clinical research. The present article covers recent clinical research developments in India as well as associated expectations, challenges, and suggestions for future directions. AAHRPP and PARTAKE provide etiologically based solutions to protect, inform, and engage the public and medical research sponsors

    Asymptotic corrections to the eigenvalue density of the GUE and LUE

    Full text link
    We obtain correction terms to the large N asymptotic expansions of the eigenvalue density for the Gaussian unitary and Laguerre unitary ensembles of random N by N matrices, both in the bulk of the spectrum and near the spectral edge. This is achieved by using the well known orthogonal polynomial expression for the kernel to construct a double contour integral representation for the density, to which we apply the saddle point method. The main correction to the bulk density is oscillatory in N and depends on the distribution function of the limiting density, while the corrections to the Airy kernel at the soft edge are again expressed in terms of the Airy function and its first derivative. We demonstrate numerically that these expansions are very accurate. A matching is exhibited between the asymptotic expansion of the bulk density, expanded about the edge, and the asymptotic expansion of the edge density, expanded into the bulk.Comment: 14 pages, 4 figure

    Step Position Distributions and the Pairwise Einstein Model for Steps on Crystal Surfaces

    Full text link
    The Pairwise Einstein Model (PEM) of steps not only justifies the use of the Generalized Wigner Distribution (GWD) for Terrace Width Distributions (TWDs), it also predicts a specific form for the Step Position Distribution (SPD), i.e., the probability density function for the fluctuations of a step about its average position. The predicted form of the SPD is well approximated by a Gaussian with a finite variance. However, the variance of the SPD measured from either real surfaces or Monte Carlo simulations depends on Δy\Delta y, the length of step over which it is calculated, with the measured variance diverging in the limit Δy\Delta y \to \infty. As a result, a length scale LWL_{\rm W} can be defined as the value of Δy\Delta y at which the measured and theoretical SPDs agree. Monte Carlo simulations of the terrace-step-kink model indicate that LW14.2ξQL_{\rm W} \approx 14.2 \xi_Q, where ξQ\xi_Q is the correlation length in the direction parallel to the steps, independent of the strength of the step-step repulsion. LWL_{\rm W} can also be understood as the length over which a {\em single} terrace must be sampled for the TWD to bear a "reasonable" resemblence to the GWD.Comment: 4 pages, 3 figure

    Steinberg modules and Donkin pairs

    Full text link
    We prove that in positive characteristic a module with good filtration for a group of type E6 restricts to a module with good filtration for a subgroup of type F4. (Recall that a filtration of a module for a semisimple algebraic group is called good if its layers are dual Weyl modules.) Our result confirms a conjecture of Brundan for one more case. The method relies on the canonical Frobenius splittings of Mathieu. Next we settle the remaining cases, in characteristic not 2, with a computer-aided variation on the old method of Donkin.Comment: 16 pages; proof of Brundan's conjecture adde
    corecore