28,759 research outputs found
Accuracy and range of validity of the Wigner surmise for mixed symmetry classes in random matrix theory
Schierenberg et al. [Phys. Rev. E 85, 061130 (2012)] recently applied the
Wigner surmise, i.e., substitution of \infty \times \infty matrices by their 2
\times 2 counterparts for the computation of level spacing distributions, to
random matrix ensembles in transition between two universality classes. I
examine the accuracy and the range of validity of the surmise for the crossover
between the Gaussian orthogonal and unitary ensembles by contrasting them with
the large-N results that I evaluated using the Nystrom-type method for the
Fredholm determinant. The surmised expression at the best-fitting parameter
provides a good approximation for 0 \lesssim s \lesssim 2, i.e., the validity
range of the original surmise.Comment: 3 pages in REVTeX, 10 figures. (v2) Title changed, version to appear
in Phys. Rev.
Density-functional theory for fermions in the unitary regime
In the unitary regime, fermions interact strongly via two-body potentials
that exhibit a zero range and a (negative) infinite scattering length. The
energy density is proportional to the free Fermi gas with a proportionality
constant . We use a simple density functional parametrized by an effective
mass and the universal constant , and employ Kohn-Sham density-functional
theory to obtain the parameters from fit to one exactly solvable two-body
problem. This yields and a rather large effective mass. Our approach
is checked by similar Kohn-Sham calculations for the exactly solvable Calogero
model.Comment: 5 pages, 2 figure
Competition and cooperation:aspects of dynamics in sandpiles
In this article, we review some of our approaches to granular dynamics, now
well known to consist of both fast and slow relaxational processes. In the
first case, grains typically compete with each other, while in the second, they
cooperate. A typical result of {\it cooperation} is the formation of stable
bridges, signatures of spatiotemporal inhomogeneities; we review their
geometrical characteristics and compare theoretical results with those of
independent simulations. {\it Cooperative} excitations due to local density
fluctuations are also responsible for relaxation at the angle of repose; the
{\it competition} between these fluctuations and external driving forces, can,
on the other hand, result in a (rare) collapse of the sandpile to the
horizontal. Both these features are present in a theory reviewed here. An arena
where the effects of cooperation versus competition are felt most keenly is
granular compaction; we review here a random graph model, where three-spin
interactions are used to model compaction under tapping. The compaction curve
shows distinct regions where 'fast' and 'slow' dynamics apply, separated by
what we have called the {\it single-particle relaxation threshold}. In the
final section of this paper, we explore the effect of shape -- jagged vs.
regular -- on the compaction of packings near their jamming limit. One of our
major results is an entropic landscape that, while microscopically rough,
manifests {\it Edwards' flatness} at a macroscopic level. Another major result
is that of surface intermittency under low-intensity shaking.Comment: 36 pages, 23 figures, minor correction
Probability density of determinants of random matrices
In this brief paper the probability density of a random real, complex and
quaternion determinant is rederived using singular values. The behaviour of
suitably rescaled random determinants is studied in the limit of infinite order
of the matrices
Calculation of some determinants using the s-shifted factorial
Several determinants with gamma functions as elements are evaluated. This
kind of determinants are encountered in the computation of the probability
density of the determinant of random matrices. The s-shifted factorial is
defined as a generalization for non-negative integers of the power function,
the rising factorial (or Pochammer's symbol) and the falling factorial. It is a
special case of polynomial sequence of the binomial type studied in
combinatorics theory. In terms of the gamma function, an extension is defined
for negative integers and even complex values. Properties, mainly composition
laws and binomial formulae, are given. They are used to evaluate families of
generalized Vandermonde determinants with s-shifted factorials as elements,
instead of power functions.Comment: 25 pages; added section 5 for some examples of application
Analysis of the separated boundary layer flow on the surface and in the wake of blunt trailing edge airfoils
The viscous flow phenomena associated with sharp and blunt trailing edge airfoils were investigated. Experimental measurements were obtained for a 17 percent thick, high performance GAW-1 airfoil. Experimental measurements consist of velocity and static pressure profiles which were obtained by the use of forward and reverse total pressure probes and disc type static pressure probes over the surface and in the wake of sharp and blunt trailing edge airfoils. Measurements of the upper surface boundary layer were obtained in both the attached and separated flow regions. In addition, static pressure data were acquired, and skin friction on the airfoil upper surface was measured with a specially constructed device. Comparison of the viscous flow data with data previously obtained elsewhere indicates reasonable agreement in the attached flow region. In the separated flow region, considerable differences exist between these two sets of measurements
Smoothing of sandpile surfaces after intermittent and continuous avalanches: three models in search of an experiment
We present and analyse in this paper three models of coupled continuum
equations all united by a common theme: the intuitive notion that sandpile
surfaces are left smoother by the propagation of avalanches across them. Two of
these concern smoothing at the `bare' interface, appropriate to intermittent
avalanche flow, while one of them models smoothing at the effective surface
defined by a cloud of flowing grains across the `bare' interface, which is
appropriate to the regime where avalanches flow continuously across the
sandpile.Comment: 17 pages and 26 figures. Submitted to Physical Review
Enumeration of RNA structures by Matrix Models
We enumerate the number of RNA contact structures according to their genus,
i.e. the topological character of their pseudoknots. By using a recently
proposed matrix model formulation for the RNA folding problem, we obtain exact
results for the simple case of an RNA molecule with an infinitely flexible
backbone, in which any arbitrary pair of bases is allowed. We analyze the
distribution of the genus of pseudoknots as a function of the total number of
nucleotides along the phosphate-sugar backbone.Comment: RevTeX, 4 pages, 2 figure
- …