179 research outputs found

    Surface micromachined mechanisms and micromotors

    Get PDF
    Electric micromotors are sub-millimeter sized actuators capable of unrestrained motion in at least one degree of freedom. Polysilicon surface micromachining using heavily phosphorus-doped LPCVD polysilicon for the structural material, LPCVD silicon nitride for the electrical isolation and deposited silicon dioxide for the sacrificial material has formed the fabrication technology base for the development of these micromotors. Two polysilicon surface micromachining processes, referred to here as the center-pin and flange, have been demonstrated for the fabrication of passive mechanisms and micromotors. Passive mechanisms such as gear trains, cranks and manipulators have been implemented on silicon. Reported operational micromotors have been of the rotary variable-capacitance salient-pole and harmonic (or wobble) side-drive designs. These micromotors are capable of motive torques in the 10 pN m order of magnitude range. Preliminary progress has been made in studying the operational, friction and wear characteristics of these micromechanical devices. Typical operational voltages have been as low as 37 V and 26 V across 1.5 mu m air gap salient-pole and harmonic micromotors. These excitations correspond to electric field intensities above 10(8) Vm-1 in the micromotor air gaps. Salient-pole and wobble micromotors have been reported to operate at speeds as high as 15000 rpm and 700 rpm, respectively. Micromotor lifetimes of at least many millions of cycles over a period of several days have been reported

    Firesetting in Children

    Get PDF
    This article reviews the literature regarding the history, etiology, diagnosis, and treatment of firesetting. A critique of the literature reveals the need to generate a clearer definition of firesetting as well as more stringent criteria for diagnosing firesetting. The standard treatments for firesetting are reviewed. Linkage of childhood firesetting to future adolescent and adult crimes is also examined. Finally, avenues for future research are discussed

    Low Voltage Nanoelectromechanical Switches Based on Silicon Carbide Nanowires

    Get PDF
    We report experimental demonstrations of electrostatically actuated, contact-mode nanoelectromechanical switches based on very thin silicon carbide (SiC) nanowires (NWs). These NWs are lithographically patterned from a 50 nm thick SiC layer heteroepitaxially grown on single-crystal silicon (Si). Several generic designs of in-plane electrostatic SiC NW switches have been realized, with NW widths as small as ~20 nm and lateral switching gaps as narrow as ~10 nm. Very low switch-on voltages are obtained, from a few volts down to ~1 V level. Two-terminal, contact-mode “hot” switching with high on/off ratios (>10^2 or 10^3) has been demonstrated repeatedly for many devices. We find enhanced switching performance in bare SiC NWs, with lifetimes exceeding those based on metallized SiC NWs

    Experimental Performance of a Micromachined Heat Flux Sensor

    Get PDF
    Steady-state and frequency response calibration of a microfabricated heat-flux sensor have been completed. This sensor is batch fabricated using standard, micromachining techniques, allowing both miniaturization and the ability to create arrays of sensors and their corresponding interconnects. Both high-frequency and spatial response is desired, so the sensors are both thin and of small cross-sectional area. Thin-film, temperature-sensitive resistors are used as the active gauge elements. Two sensor configurations are investigated: (1) a Wheatstone-bridge using four resistors; and (2) a simple, two-resistor design. In each design, one resistor (or pair) is covered by a thin layer (5000 A) thermal barrier; the other resistor (or pair) is covered by a thick (5 microns) thermal barrier. The active area of a single resistor is 360 microns by 360 microns; the total gauge area is 1.5 mm square. The resistors are made of 2000 A-thick metal; and the entire gauge is fabricated on a 25 microns-thick flexible, polyimide substrate. Heat flux through the surface changes the temperature of the resistors and produces a corresponding change in resistance. Sensors were calibrated using two radiation heat sources: (1) a furnace for steady-state, and (2) a light and chopper for frequency response

    Monocrystalline silicon carbide nanoelectromechanical systems

    Get PDF
    SiC is an extremely promising material for nanoelectromechanical systems given its large Young's modulus and robust surface properties. We have patterned nanometer scale electromechanical resonators from single-crystal 3C-SiC layers grown epitaxially upon Si substrates. A surface nanomachining process is described that involves electron beam lithography followed by dry anisotropic and selective electron cyclotron resonance plasma etching steps. Measurements on a representative family of the resulting devices demonstrate that, for a given geometry, nanometer-scale SiC resonators are capable of yielding substantially higher frequencies than GaAs and Si resonators

    Silicon carbide and other films and method of deposition

    Get PDF
    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties

    Microfabricated Ice-Detection Sensor

    Get PDF
    Knowledge of ice conditions on important aircraft lift and control surfaces is critical for safe operation. These conditions can be determined with conventional ice-detection sensors, but these sensors are often expensive, require elaborate installation procedures, and interrupt the airflow. A micromachined, silicon-based, flush-mounted sensor which generates no internal heat has been designed, batch fabricated, packaged, and tested. The sensor is capable of distinguishing between an ice-covered and a clean surface. It employs a bulk micromachined wafer with a 7 micrometer-thick, boron-doped, silicon diaphragm which serves as one plate of a parallel-plate capacitor. This is bonded to a second silicon wafer which contains the fixed electrodes, one to drive the diaphragm by application of a voltage, the other to measure the deflection by a change in capacitance. The diaphragm sizes ranged from 1x1 mm to 3x3 mm, and the gap between parallel-plate capacitors is 2 micrometers. A 200 V d.c. was applied to the driving electrode which caused the capacitance to increase approximately 0.6pf, from a nominal capacitance of 0.6pf, when the surface was ice free. After the sensor was cooled below the freezing point of water, the same voltage range was applied to the drive electrode. The capacitance increased by the same amount. Then a drop of water was placed over the diaphragm and allowed to freeze. This created an approximately 2mm-thick ice layer. The applied 200V d.c. produced no change in capacitance, confirming that the diaphragm was locked to the ice layer. Since the sensor uses capacitive actuation, it uses very little power and is an ideal candidate for inclusion in a wireless sensing system

    Dissipation in Single-Crystal 3C-SiC Ultra-High Frequency Nanomechanical Resonators

    Get PDF
    The energy dissipation 1/Q (where Q is the quality factor) and resonance frequency characteristics of single-crystal 3C-SiC ultrahigh frequency (UHF) nanomechanical resonators are measured, for a family of UHF resonators with resonance frequencies of 295MHz, 395MHz, 411MHz, 420MHz, 428MHz, and 482MHz. A temperature dependence of dissipation, 1/Q ~ T^(0.3) has been identified in these 3C-SiC devices. Possible mechanisms that contribute to dissipation in typical doubly-clamped beam UHF resonators are analyzed. Device size and dimensional effects on the dissipation are also examined. Clamping losses are found to be particularly important in these UHF resonators. The resonance frequency decreases as the temperature is increased, and the average frequency temperature coefficient is about -45ppm/K.Comment: Solid-State Sensors, Actuators, and Microsystems Workshop Hilton Head Island, South Carolina, June 4-8, 2006 (Invited

    Quality factor issues in silicon carbide nanomechanical resonators

    Get PDF
    Nanomechanical resonators with fundamental mode resonance frequencies in the Very-High Frequency (VHF), Ultra-High Frequency (UHF) range and microwave L-band are fabricated from monocrystalline silicon carbide thin film material, and measured by magnetomotive transduction, combined with a balanced bridge read out circuit. For resonators made from the same film, we measured the frequency (i.e., geometry) dependence of the quality factor. It is found that the quality factor of these resonators decreases when the frequency increases. This indicates the importance of clamping loss in this regime. In addition, from studies of resonators made from different chips with varying surface roughness, we found a strong correlation between surface roughness of the silicon carbide thin film material and the quality factor of the resonators made from it. Understanding the dissipation mechanisms, and thus improving the quality factor of these resonators, is important for implementing applications promised by these devices

    Composition Comprising Silicon Carbide

    Get PDF
    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties
    • …
    corecore