Experimental Performance of a Micromachined Heat Flux Sensor

Abstract

Steady-state and frequency response calibration of a microfabricated heat-flux sensor have been completed. This sensor is batch fabricated using standard, micromachining techniques, allowing both miniaturization and the ability to create arrays of sensors and their corresponding interconnects. Both high-frequency and spatial response is desired, so the sensors are both thin and of small cross-sectional area. Thin-film, temperature-sensitive resistors are used as the active gauge elements. Two sensor configurations are investigated: (1) a Wheatstone-bridge using four resistors; and (2) a simple, two-resistor design. In each design, one resistor (or pair) is covered by a thin layer (5000 A) thermal barrier; the other resistor (or pair) is covered by a thick (5 microns) thermal barrier. The active area of a single resistor is 360 microns by 360 microns; the total gauge area is 1.5 mm square. The resistors are made of 2000 A-thick metal; and the entire gauge is fabricated on a 25 microns-thick flexible, polyimide substrate. Heat flux through the surface changes the temperature of the resistors and produces a corresponding change in resistance. Sensors were calibrated using two radiation heat sources: (1) a furnace for steady-state, and (2) a light and chopper for frequency response

    Similar works