21 research outputs found
Colon-Specific Drug Delivery Behavior of pH-Responsive PMAA/Perlite Composite
The preparation, characterization, and in vitro release of 5-aminosalicylic acid (5-ASA) from methacrylic acid (MAA)/perlite composites (APC) prepared via a sol–gel route are reported. The free-radical graft polymerization of methacrylic acid (MAA) onto perlite particles was studied experimentally. The grafting procedure consisted of surface activation with 3-(trimethoxysilyl) propyl methacrylate (TSPA), followed by free-radical graft polymerization of methacrylic acid (MAA) in ethyl acetate with 2,2′-azobisisobutyronitrile (AIBN) initiator. The composition of the composites hybrid materials was determined by FTIR spectroscopy. Equilibrium swelling studies were carried out in enzyme-free simulated gastric and intestinal fluids (SGF and SIF, respectively). The dried composites were immersed in a saturated solution of 5-ASA in water overnight and dried over a period of three days at room temperature and the in vitro release profiles were established separately in both (SGF, pH 1) and (SIF, pH 7.4). The 5-ASA concentration of the solution was measured using a UV-Vis spectrophotometer (205 nm) at different time intervals. The in vitro drug release test revealed that the release rate of 5-ASA in buffer solutions increased with the silica content in the composites; on the contrary, the increase of the content of 3-(trimethoxysilyl)propyl methacrylate (TSPA), a coupling agent, decreased the drug release rate
Recommended from our members
Improving antibacterial efficiency of curcumin in magnetic polymeric nanocomposites
In recent years, resistance to chemical antibiotics, as well as their side effects, has caused a necessity to utilize natural substances and herbal components with antibacterial effects. Curcumin, the major substance of Curcuma longa’s rhizome, was used as an antibacterial agent since ancient times. This work aimed to formulate a novel nanocomposite for the delivery of curcumin to overcome orthodox drugs resistance against bacteria and improve its efficacy. To fabricate targeting nanocomposites, first, Fe3O4 nanoparticles were synthesized followed by coating the obtained nanoparticles using sodium alginate containing curcumin. A 2 by 3 factorial design was tailored to predict the optimum formulation of nanocomposites. Characterization of nanocomposites including particle size, polydispersity index (PDI), zeta potential, entrapment efficiency, and drug loading was performed. The optimum formulation was analyzed by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FT-IR), and in vitro release study at different pHs. Finally, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of samples against seven common bacteria were determined. Results showed that the optimized formulation contained 400 nm particles with the PDI and zeta potentials of 0.4 and − 58 mV, respectively. The optimized formulation with 70% entrapment efficiency reduced the MIC value 2 to 4 times in comparison with pure curcumin. Results also showed that polymer and drug concentrations can significantly affect entrapment efficiency. In conclusion, the current investigation demonstrated that this magnetic nanocomposite can be applied for the delivery of curcumin