8 research outputs found

    Decentralized Greedy-Based Algorithm for Smart Energy Management in Plug-in Electric Vehicle Energy Distribution Systems

    Get PDF
    Variations in electricity tariffs arising due to stochastic demand loads on the power grids have stimulated research in finding optimal charging/discharging scheduling solutions for electric vehicles (EVs). Most of the current EV scheduling solutions are either centralized, which suffer from low reliability and high complexity, while existing decentralized solutions do not facilitate the efficient scheduling of on-move EVs in large-scale networks considering a smart energy distribution system. Motivated by smart cities applications, we consider in this paper the optimal scheduling of EVs in a geographically large-scale smart energy distribution system where EVs have the flexibility of charging/discharging at spatially-deployed smart charging stations (CSs) operated by individual aggregators. In such a scenario, we define the social welfare maximization problem as the total profit of both supply and demand sides in the form of a mixed integer non-linear programming (MINLP) model. Due to the intractability, we then propose an online decentralized algorithm with low complexity which utilizes effective heuristics to forward each EV to the most profitable CS in a smart manner. Results of simulations on the IEEE 37 bus distribution network verify that the proposed algorithm improves the social welfare by about 30% on average with respect to an alternative scheduling strategy under the equal participation of EVs in charging and discharging operations. Considering the best-case performance where only EV profit maximization is concerned, our solution also achieves upto 20% improvement in flatting the final electricity load. Furthermore, the results reveal the existence of an optimal number of CSs and an optimal vehicle-to-grid penetration threshold for which the overall profit can be maximized. Our findings serve as guidelines for V2G system designers in smart city scenarios to plan a cost-effective strategy for large-scale EVs distributed energy management

    Data-Driven Capacity Planning for Vehicular Fog Computing

    Get PDF
    The strict latency constraints of emerging vehicular applications make it unfeasible to forward sensing data from vehicles to the cloud for processing. To shorten network latency, vehicular fog computing (VFC) moves computation to the edge of the Internet, with the extension to support the mobility of distributed computing entities (a.k.a fog nodes). In other words, VFC proposes to complement stationary fog nodes co-located with cellular base stations with mobile ones carried by moving vehicles (e.g., buses). Previous works on VFC mainly focus on optimizing the assignments of computing tasks among available fog nodes. However, capacity planning, which decides where and how much computing resources to deploy, remains an open and challenging issue. The complexity of this problem results from the spatio-temporal dynamics of vehicular traffic, varying computing resource demand generated by vehicular applications, and the mobility of fog nodes. To solve the above challenges, we propose a data-driven capacity planning framework that optimizes the deployment of stationary and mobile fog nodes to minimize the installation and operational costs under the quality-of-service constraints, taking into account the spatio-temporal variation in both demand and supply. Using real-world traffic data and application profiles, we analyze the cost efficiency potential of VFC in the long term. We also evaluate the impacts of traffic patterns on the capacity plans and the potential cost savings. We find that high traffic density and significant hourly variation would lead to dense deployment of mobile fog nodes and create more savings in operational costs in the long term

    Video Caching, Analytics and Delivery at the Wireless Edge: A Survey and Future Directions

    Get PDF
    Future wireless networks will provide high bandwidth, low-latency, and ultra-reliable Internet connectivity to meet the requirements of different applications, ranging from mobile broadband to the Internet of Things. To this aim, mobile edge caching, computing, and communication (edge-C3) have emerged to bring network resources (i.e., bandwidth, storage, and computing) closer to end users. Edge-C3 allows improving the network resource utilization as well as the quality of experience (QoE) of end users. Recently, several video-oriented mobile applications (e.g., live content sharing, gaming, and augmented reality) have leveraged edge-C3 in diverse scenarios involving video streaming in both the downlink and the uplink. Hence, a large number of recent works have studied the implications of video analysis and streaming through edge-C3. This article presents an in-depth survey on video edge-C3 challenges and state-of-the-art solutions in next-generation wireless and mobile networks. Specifically, it includes: a tutorial on video streaming in mobile networks (e.g., video encoding and adaptive bitrate streaming); an overview of mobile network architectures, enabling technologies, and applications for video edge-C3; video edge computing and analytics in uplink scenarios (e.g., architectures, analytics, and applications); and video edge caching, computing and communication methods in downlink scenarios (e.g., collaborative, popularity-based, and context-aware). A new taxonomy for video edge-C3 is proposed and the major contributions of recent studies are first highlighted and then systematically compared. Finally, several open problems and key challenges for future research are outlined

    Risk-Averse Decentralized Optimal Scheduling of a Virtual Energy Hub Plant Equipped with Multi Energy Conversion Facilities in Energy Markets

    Get PDF
    Distributed multi-energy systems, in addition to their advantages, pose significant challenges to future energy networks. One of these challenges is how these systems participate in energy markets. To overcome this issue, this paper introduces a virtual energy hub plant (VEHP) comprised of multiple energy hubs (EHs) to participate in the energy market in a cost-effective manner. Each EH is equipped with multiple distributed energy resources (DERs) in order to supply electrical, heating and cooling loads. Moreover, an integrated demand response (IDR) program and vehicle-to-grid (V2G) capable electric vehicles (EVs) are taken into consideration to enhance the flexibility to EHs. The manager of the VEHP participates in the existing day-ahead markets on behalf of EHs after collecting their bids. Since EHs are independent entities, a hybrid model of mobile edge computing system and analytical target cascading theory (MECATC) is proposed to preserve data privacy of EHs. Further, to tackle the uncertainty of renewables, a robust optimization method is applied. Obtained results corroborated the proposed scheduling is efficient and could increase the VEHP’s profit about 21.4% in light of using flexible technologies

    Green Edge Adaptive Mobile Video Streaming with Device-to-Device Communication

    No full text
    Green mobile edge computing (GMEC) refers to the integration of intermittent renewable energy sources into mobile edge computing architecture. It is a promising solution to overcome the challenges posed by grid-powered edge servers. On the other hand, direct device-to-device (D2D) communication and caching helps to alleviate the processing tasks at the edges and reduce traffic in the mobile backhaul. Using either D2D or energy harvesting functionality alone causes some performance loss which can be compensated by enabling both functionalities into the MEC. Motivated by this fact, we investigate how enabling D2D into the green MEC helps to save the grid/renewable energy consumption without sacrificing user experience or the traffic localization benefits, specifically in the case of on demand video streaming. To this end, we formulate a joint optimization of quality of experience (QoE), backhaul traffic, and grid energy consumption in D2D-enabled GMEC and design a heuristic-based algorithm with low complexity to solve the problem. Simulation results using both radio link information of the clients and measured solar harvested energy reveal that integrating D2D into GMEC for DASH indeed helps to significantly save the grid/renewable energy and reduce the backhaul traffic with marginal improvement in quality of video delivered to the clients.Peer reviewe

    QoE-traffic Optimization Through Collaborative Edge Caching in Adaptive Mobile Video Streaming

    Get PDF
    Multi-access edge computing has been proposed as a promising approach to localize the access of mobile clients to the network edges, therefore, reducing significantly the traffic congestion on the backhaul network. Due to time-varying wireless channel condition, the video caching at the mobile edges for dynamic adaptive video streaming over HTTP (DASH) needs to be efficiently handled to alleviate the high bandwidth demand on the backhaul network and improve the quality of experience (QoE) of end users. We investigate the impact of collaborative mobile edge caching on joint QoE and backhaul data traffic by proposing the joint QoE-traffic optimization with collaborative edge caching which introduces the BFTR (backhaul/fronthaul traffic ratio) parameter adjustable by the mobile network operator. We then design a self-tuned bitrate selection algorithm with low complexity to solve the optimization problem and further propose an efficient cache replacement strategy called retention-based collaborative caching. Through simulation-based evaluations, we show a noticeable gain in the percentage of cache miss and specify some threshold for BFTR parameter after which the significant reduction in the data traffic with further improvement in average video bitrate is obtained using collaborative caching. Our findings help mobile edge system developers design an efficient collaborative caching mechanism for 5G networks.Peer reviewe

    Hierarchical User-Driven Trajectory Planning and Charging Scheduling of Autonomous Electric Vehicles

    Get PDF
    Autonomous electric vehicles (A-EVs), regarded as one of the innovations to accelerate transportation electrification, have sparked a flurry of interest in trajectory planning and charging scheduling. In this regard, this work employs mobile edge computing (MEC) to design a decentralized hierarchical algorithm for finding an optimal path to the nearby A-EV parking lots (PL), selecting the best PL, and executing an optimal charging scheduling. The proposed model makes use of unmanned aerial vehicles (UAVs) to assist edge servers in trajectory planning by surveying road traffic flow in real-time. Further, the target PLs are selected using a user-driven multi-objective problem to minimize the cost and waiting time of A-EVs. To tackle the complexity of the optimization problem, a greedy-based algorithm has been developed. Finally, charging/discharging power is scheduled using a local optimizer based on the PLs’ real-time loads which minimizes the deviation of the charging/discharging power from the average load. The obtained results show that the proposed model can handle charging/discharging requests of on-move A-EVs and bring fiscal and non-fiscal benefits for A-EVs and the power grid, respectively. Moreover, it observed that user satisfaction in terms of traveling time and traveling distance are increased by using the edge-UAV model

    Data-driven Capacity Planning for Vehicular Fog Computing

    No full text
    | openaire: EC/H2020/825496/EU//5G-MOBIX | openaire: EC/H2020/815191/EU//PriMO-5GThe strict latency constraints of emerging vehicular applications make it unfeasible to forward sensing data from vehicles to the cloud for processing. To shorten network latency, vehicular fog computing (VFC) moves computation to the edge of the Internet, with the extension to support the mobility of distributed computing entities (a.k.a fog nodes). In other words, VFC proposes to complement stationary fog nodes co-located with cellular base stations with mobile ones carried by moving vehicles (e.g., buses). Previous works on VFC mainly focus on optimizing the assignments of computing tasks among available fog nodes. However, capacity planning, which decides where and how much computing resources to deploy, remains an open and challenging issue. The complexity of this problem results from the spatio-temporal dynamics of vehicular traffic, varying computing resource demand generated by vehicular applications, and the mobility of fog nodes. To solve the above challenges, we propose a data-driven capacity planning framework that optimizes the deployment of stationary and mobile fog nodes to minimize the installation and operational costs under the quality-of-service constraints, taking into account the spatio-temporal variation in both demand and supply. Using real-world traffic data and application profiles, we analyze the cost efficiency potential of VFC in the long term. We also evaluate the impacts of traffic patterns on the capacity plans and the potential cost savings. We find that high traffic density and significant hourly variation would lead to dense deployment of mobile fog nodes and create more savings in operational costs in the long term.Peer reviewe
    corecore