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Hierarchical User-Driven Trajectory

Planning and Charging Scheduling of
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Amin Mansour Saatloo, Student Member, IEEE, Abbas Mehrabi, Member, IEEE,

Mousa Marzband, Senior Member, IEEE, and Nauman Aslam, Member, IEEE

Abstract

Autonomous electric vehicles (A-EVs), regarded as one of the innovations to accelerate transportation

electrification, have sparked a flurry of interest in trajectory planning and charging scheduling. In this regard,

this work employs mobile edge computing (MEC) to design a decentralized hierarchical algorithm for finding an

optimal path to the nearby A-EV parking lots (PL), selecting the best PL, and executing an optimal charging

scheduling. The proposed model makes use of unmanned aerial vehicles (UAVs) to assist edge servers in

trajectory planning by surveying road traffic flow in real-time. Further, the target PLs are selected using a

user-driven multi-objective problem to minimize the cost and waiting time of A-EVs. To tackle the complexity

of the optimization problem, a greedy-based algorithm has been developed. Finally, charging/discharging power

is scheduled using a local optimizer based on the PLs’ real-time loads which minimizes the deviation of the

charging/discharging power from the average load. The obtained results show that the proposed model can

handle charging/discharging requests of on-move A-EVs and bring fiscal and non-fiscal benefits for A-EVs

and the power grid, respectively. Moreover, it observed that user satisfaction in terms of traveling time and

traveling distance are increased by using the edge-UAV model.
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NOMENCLATURE

Abbreviations

A-EV Autonomous electric vehicle

PL Parking lot

Sets

G Set of aggregators indexed by g

I Set of A-EVs indexed by i

K Set of PLs indexed by k

M Set of transportation systems’ nodes indexed by n,m

T Set of scheduling time horizon indexed by t

Parameters

βi Self-discharging coefficient of A-EV i’s battery

βi
1/β

i
2/β

i
3/β

i
4 Fitting parameters related to charging/discharging power of A-EV i

ηi Charging efficiency of A-EV i’s battery

ωi/γi Fitting parameters related to calendar degradation cost of A-EV i

C
k

PL k capacity

P
i

chr/P
i

dch Maximum charging/discharging power of A-EV i (kW)

vn,m Maximum allowed speed between nodes n and m (km/h)

ϕ Weighting factor in the multi-objective function

τ0n,m Traveling time between nodes n and m without considering traffic flow (h)

θi Battery temperature of A-EV i

ζDC/ζFC Degradation/fluctuation costs coefficients

ak0/a
k
1 Intercept ($/kWh)/slope ($/kWh/kW) coefficients

di,k Distance between A-EV i and PL k (km)

F i Motor force of A-EV i (kWh/km)

fn,m Traffic flow at time slot t between nodes n and m (km/h)

f cap
n,m Traffic capacity at the link between nodes n and m at time slot t

Lk,t Base load of PL k at time slot t (kW)



ln,m Distance between nodes n and m (km)

mk/δk Step length (kW)/incremental ($/kWh) price

Vi Charging/discharging duration of a-EV i (h)

vi,tave Average speed of A-EV i at time slot t (km/h)

vtrave Traffic average speed (km/h)

Dependent variables

τ i,tn,m Traveling time of A-EV i at time slot t between nodes n and m (h)

Ai,k/Di,k Arrival/Departure time of A-EV i from PL k

DCi,k,t Degradation cost of A-EV i at PL k and time slot t ($)

DCi,k,t
cal /DCi,k,t

cyc Calendar/cycle degradation costs of A-EV i at PL k and time slot t ($)

FCi,k,t Fluctuation cost of A-EV i at PL k and time slot t ($)

MCi,k,t Maintenance cost of A-EV i at PL k and time slot t ($)

OCi,k,t Operation cost of A-EV i at parking lot k and time slot t ($)

pk,tz Real-time power price at PL k and time slot t ($/kW)

SoCi,t State of charge of A-EV i at time slot t (kWh)

T i,k,t Waiting time of PL k at time slot t (h)

zk,t Real-time load at PL k and time slot t (kW)

Main decision variables

ei,k,t Free variable to determine charging/discharging power of A-EV i at PL k and time slot t

xi,k,t Binary variable such that xi,k,t = 1 means A-EV i at time slot t is connected to PL k

I. INTRODUCTION

A. Motivation and background

THE transportation section is one of the largest contributors to greenhouse gas emissions which leads

to climate change and global warming. In accord with Paris Agreement, researchers are tending to

innovate zero-carbon technologies, in which the electrified transportation system has emerged as a promising

solution. The advent of electric vehicles (EVs) is an opportunity to turn from internal combustion engine

(ICE) transportation to electrified transportation, therefore, as a consequence of the widespread adoption of

EV fleets, significant contributions could be made toward the reduction of greenhouse gasses leading to and

potentially contributing to mitigating the effects of global warming [1]. As the 21st century continues to

unfold, many new technologies have arisen in the EV industry and introducing autonomous vehicles is one

of those technologies. An autonomous vehicle is a driverless vehicle that can be controlled via intelligent



systems and sensors to path following. To stick with environmental concerns, electric autonomous vehicles

(A-EVs) have been developed and thanks to automotive companies, such as Tesla and Google, they will be

prevalent in the years ahead. Due to the variety of systems and hardware, the power consumption of A-EVs

is more than regular EVs; hence energy management of A-EVs is a formidable issue. Moreover, in addition

to the environmental benefits of A-EVs, since A-EVs are driverless, the uncertainty of driver behaviors

dramatically drops in comparison with normal EVs and they become more accurate and controllable.

The integration of A-EVs with smart cities and following that with the smart grids raise serious challenges

regarding different aspects, especially from electrical and communication points of view. An A-EV, from

the electrical perspective, is a mobile storage system that can be applied in grid-to-vehicle (G2V), i.e.,

charging, and vehicle-to-grid (V2G), i.e., discharging, modes. However, the electricity market, on the one

hand, inhibits single A-EVs, especially on-move A-EVs, to participate in the market as they might compromise

the economic dispatch of the power system since they have to be allocated to a parking lot (PL) to benefit

from V2G/G2V facilities. By the fast-growing of the A-EVs, deciding the best PL for allocating A-EVs as

well as introducing a model for charging/discharging scheduling of A-EVs is of paramount importance. On

the other hand, online and real-time scheduling of a high number of A-EVs is another challenge. Centralized

cloud-based frameworks due to computational burden and communication overhead fail to coordinate A-

EVs on a large scale. Therefore, decentralized platforms, such as mobile edge computing (MEC) which was

introduced by European Telecommunications Standard Institute, for online computation and communication

have been developed [2]. Indeed, the computational burden from cloud servers has been distributed among

multiple edge servers in a MEC system; hence, such a system can be extended easily to include a high number

of vehicles. Another challenge concern on-move A-EVs is optimal trajectory planning according to real-time

traffic flow. In this regard, unmanned aerial vehicles (UAVs) known as drones have been well utilized for

different road traffic monitoring scenarios on the ground that they can move around swiftly without restricting

in road traffics [3].

Motivated by the discussion above, this work tries to introduce a novel scheduling and trajectory planning

of on-move A-EVs with the aim of minimizing A-EVs’ cost and waiting time. Moreover, an integrated Edge-

UAV communication system is proposed with the aim of online data exchange where the UAVs are used for

real-time road surveillance. Since the proposed model is mixed-integer nonlinear programming (MINLP), a

greedy-based heuristic algorithm is designed to solve the optimization problem. An MINLP contains both

continuous and integer variables where the objective function and feasible search area are described by

nonlinear functions. By using this kind of programming, on the one hand, accurate features in real-life



could be reflected in mathematical modelings. Due to this great advantage, MINLP optimization problems

are widely used in different areas such as operation, economy, engineering, and process industry [4]. On

the other hand, an MINLP combines complexity to the optimization problem in solving process because of

handling a mixed-integer program (MIP) and a nonlinear program (NLP). In this work, the MIP subclass of

the MINLP is handled by the proposed greedy algorithm. Then the remained problem, which is an NLP, is

solved using a local optimizer.

B. Paper organization

The remainder of the paper is organized as follows. Section II includes literature review, research gaps and

contributions. Section III explains model description, main objectives and assumptions. Section IV focuses

on the problem formulation. Section V supplies the proposed online greedy-based solution approach and

analysis of complexity and optimality. Section VI reports simulation results and numerical analysis. Ultimately,

section VII concludes the paper.

II. RELATED WORKS

Following the ongoing quest for EVs in smart cities; many pieces of research have been dedicated to the

scheduling of EV fleets. For instance, in [5], a two-stage scheduling model has been proposed for electric

fleets, in which the first stage deals with feasible optimal load profiles of EVs, and the second stage solves

an optimization problem to select the EVs to follow the load fed based on their charging priority. Another

energy management model has been introduced in [6], where the objectives of the problem are to minimize

the waiting time of EVs for charging/discharging services and minimize the stress level of EVs’ supply

component. A bilevel charging scheduling of EVs to reduce the charging station operation costs has been

proposed in [7], where the upper-level deals with charging index and charging duration while the lower level

optimizes the charging power at each time slot. In [8], a multi-criteria decision making for PL selection

based on EVs’ preferences including PL availability, SoC value and PL usage history has been presented. All

the aforementioned works have considered a centralized environment for scheduling; however, centralized

platforms have a computational burden and cannot be extended to large scales.

To cope with scalability and also privacy issues of EVs, decentralized energy management models have been

developed in the literature. In [9], a deep reinforcement learning approach has been proposed for cooperative

charging management of EVs in a decentralized platform. A security constraint charging strategy including

power flow and voltage management has been proposed in [10], where a distributed online platform has been

designed for EVs. Another online framework based on the greedy algorithm for charging and discharging EVs



has been introduced in [11], in which the objective of the presented optimization problem is the maximization

of social welfare including profit of both EVs and parking lots . The greedy algorithm has been recognized as

a fast-response method in online applications and it has been used widely in other works, e.g., [2], [12] as in

online applications running time of the optimization models is highly important. Regarding trajectory planning

of EVs, ref. [13] has proposed a security constraint model for path planning by coupling transportation and

power grid networks. In the mentioned work, a wireless power transfer model for charging EVs has been

introduced. In addition, the Floyd algorithm has been used to find the shortest path to a destination. However,

this work suffers from considering the V2G ability of EVs as well as considering a decentralized approach

and communication system for online data exchange.

Furthermore, the prevalent of A-EVs over the recent years has attracted researchers’ attention. In this

regard, several works have introduced different vehicle-following approaches. In [14], a vehicle-to-everything

(V2X) enabled robust integrated longitudinal and lateral vehicle-following control model has been presented,

where a packet dropout compensator has been proposed to compensate for the V2X drawbacks such as time-

varying delays and dropouts. In [15], a three-layer procedure has been introduced to prevent collisions on

highways while changing lanes. The first layer generates a reference trajectory, then the obtained waypoints

and time stamps are checked in the second layer to decide whether a new assignment of timestamps to

the waypoints is needed. Eventually, a new trajectory is performed in the third layer if the collision will

not be avoided. Study [16] has proposed a path following and yaw controllers based on model predictive

control (MPC) for A-EVs for double lane routes. Authors in [17] have proposed a real-time decision-making

process based on real drivers’ motivation on changing driving plans. Further, a risk-assessment model based

on trajectory prediction of nearby drivers has been done in this work. In addition, study [18] provides a

comprehensive review on X-by-wire chassis coordinated control as it is essential in autonomous vehicles.

Unlike autonomous vehicle control research, few of the previous works contributed to the energy management

of A-EVs. In [19], a decentralized linear algorithm for parking allocation of A-EVs considering V2G ability

has been developed. A charging and parking management of A-EVs considering waiting time and traveling

time has been introduced in [20]. However, traffic flow and optimal charging scheduling have been neglected.

In [21], to tackle the hybrid A-EVs driving condition uncertainty and also energy management of them, fuzzy

logic types 1 and 2 have been taken into consideration. An optimal sizing and charging planning of an entity

that operates A-EVs has been introduced in [22], in which the presented model has been formulated as a

linear problem and guarantees optimality.

With urbanization and increasing population in urban areas, roads become more congested than ever before



and traffic plays an important role in urban areas [23]. Traditionally, roadside units based on stationary low-

altitude cameras were used to capture the traffic [24]. These technologies passively collect data at the point

of the installed camera. Moreover, accidents could not be detected by this kind of technology because of

the distance between two units. The other alternative is to use V2X technologies such as GPS sensors.

However, this is not an accurate method to capture the real-time traffic as some vehicles might not carry such

sensors. In today’s life, UAVs are widely being used for different purposes such as civilian tasks, scientific

research and transportation management [25]. For traffic monitoring purposes, a UAV is equipped with a

ground-faced camera that makes it capable to capture vehicles within a wide range of areas [26]. UAVs

are also flexible and can swift over the roads without stocking in traffic which increases the scalability of

the monitoring system. Moreover, compared with traditional technologies which impose high investment and

operational costs, UAVs are low-cost and easy to operation alternatives. Regarding data transmission, UAVs

are able to transmit data efficiently and faster over short time slots using cellular networks, causing less

computational and communication overheads [27]-[28]. Accordingly, UAVs outperform other technologies in

traffic monitoring in many aspects. On the other hand, authors in [29] have investigated the impact of the

different pricing in PLs on the load distribution of EVs and traffic flow. In this work, it has been shown that

heterogeneous pricing affects EVs’ decisions on PLs and traffic flow. However, a charging scheduling and

optimal trajectory planning according to the traffic flow have not been performed.

As autonomous vehicles are driverless, designing a reliable vehicular communication architecture for A-

EVs is another considerable research topic that has received attention. In this context, some papers have

investigated communication frameworks for electric vehicles such as [2], which has proposed mobile edge

computing for real-time scheduling of EVs. In [30], mobile edge computing has been employed in order

to decentralize the battery switch model that the proposed model aims to allocate EVs with parking lots

considering the minimum waiting time. A software-defined network (SDN) assisted mobile edge computing

algorithm for charging and discharging of EVs within the minimum waiting time has been introduced in [31],

where the SDN has been considered for enhancing data transition and efficiency.

A. Research gaps and contributions

Many prior works have presented different methods for PL selection, charging/discharging scheduling and

trajectory planning of EVs and A-EVs. However, there exist serious research gaps. Firstly, some of the works

have focused on centralized models for EVs such as [5], [6], [32], [33] and ignored the scalability and

data security of the system. Secondly, although there are some papers that present decentralized solutions

for EVs, e.g., [9]–[13], they cannot be applied for A-EVs as a trustable communication system for online



data exchange has not been proposed in these works. Moreover, in most of the works, trajectory planning

has been ignored, such as [2], [6], [8], [11], [19], [30]. In some works such as [13],[22] the impact of

traffic flow has not been investigated in trajectory planning, while in urban areas considering traffic flow is

an important factor for routing vehicles. In addition, in [13], multiple parameters in the trajectory planning

have been considered which tuning of the weights associated with each parameter is challenging. Majority

of previous works concerning A-EVs, such as [3], [16], [17], [21], [22], [34], have analyzed A-EVs for

sensors, signal processing and related accurate path following issues, while trajectory planning and charging

scheduling of A-EVs have not been well explored. Based on the presented motivation and existing gaps,

the main contributions of the current work are. Moreover, Table I concludes the existing gaps and main

contributions of this work.

• Introducing a novel model for PL selection and charging/discharging scheduling on-move A-EVs. Since

energy cost is very important in real-life for energy users and considering this factor in the best PL

selection is vital. In addition, waiting time is highly contributing to user satisfaction. Therefore, the

best parking lot is decided based on the preferences between cost and waiting time. Moreover, a local

optimizer is employed to extract real-time charging/discharging scheduling for on-move A-EVs.

• Presenting a new trajectory planning based on the real-time traffic flow. Further, unlike previous works,

only traveling time is used in the trajectory planning according to the real-time traffic. In light of using

the MEC system, A-EVs are guided by nearby edge servers to nearby PLs, which are geographically

close, and user satisfaction in terms of traveling distance is also satisfied.

• Employing an integrated Edge-UAV model for the first time with the aim of a real-time and decen-

tralized operation. By using edge-servers, the centralized cloud-based problem is broken into multiple

decentralized sub-problems in edge-servers, resulting in lesser computation/communication complexity

as well as improving scalability and security due to the fact that edge-serves are isolated from the rest of

the network. Moreover, the UAV technology is used for real-time traffic data gathering, in which UAVs

transmit the real-time traffic data to the edge-servers from where it is communicated to the A-EVs in

order to perform accurate trajectory planning.

• Finally, to reflect the accurate models on the scheduling, the optimization problem is mathematically

modeled as an MINLP. Hence, to tackle the complexity and intractability of the optimization problem

associated with the best PL selection, a greedy-based algorithm is developed as a solution approach.

The greedy-based algorithm is a fast-response method that can provide a sub-optimal solution with an

acceptable deviation from the global solution.



TABLE I: Comparison of existing works and the current work
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Mehrabi, et. al [2] ✓ ✓ ✓ ✗ ✗ MEC
Wu, et. al [6] ✗ ✓ ✗ ✗ ✗ None
Sadreddini, et. al [8] ✗ ✗ ✗ ✗ ✗ None
Mehrabi, et. al [11] ✗ ✓ ✓ ✗ ✗ None
Zhou, et. al [13] ✗ ✓ ✗ ✓ ✗ None
Lam, et. al [19] ✗ ✗ ✓ ✗ ✗ None
Zhang, et. al [22] ✗ ✗ ✗ ✓ ✗ None
Cao, et. al [30] ✗ ✗ ✓ ✗ ✗ MEC

Current work ✓ ✓ ✓ ✓ ✓
Edge-UAV,

Cloud

III. SYSTEM MODEL DESCRIPTION

The schematic view of the proposed model for charging/discharging of on-move A-EVs has been demon-

strated schematically in Fig. 1. The system is composed of three different types of A-EV sets based on their

operations, i.e., the set of A-EVs in charging mode ICHG, the set of A-EVs in discharging mode IDSG

and the set of vehicle-to-grid A-EVs in both charging and discharging modes IV 2G. The considered three

types of A-EVs are indexed by i ∈ I = ICHG ∪ IDSG ∪ IV 2G. The index s ∈ S = {1, 2, .., |S|} shows

the number of roadsides mobile edge servers and shows the number of roadsides mobile edge servers and

k ∈ K = {1, 2, .., |K|} denotes the number of PLs distributed in the transportation system. These edge servers

are equipped with high-power onboard processors to facilitate the processing of A-EVs requests which are

widely used in vehicular communication systems. Edge servers receive data associated with PLs’ real-time

electricity load and prices via contact with aggregators. Each aggregator controls multiple nearby PLs which

is denoted by g ∈ G = {1, 2, .., |G|} and notations Cg and Gs represent the set of PLs that are controlled

by the aggregator g and the set of aggregators communicate with the edge server s ∈ S. Furthermore, there

are UAVs that are surveying around to capture traffic conditions. Traffic flow in real-time is sent to the edge

servers in real-time and in doing so, A-EVs can detect the nearest way to the nearby PLs. The transportation

system is denoted by a set of nodes indexed by n,m ∈M = {1, 2, ..., |M|} Each link between nodes n and

m is denoted by weight wn,m, in which wn,m = 0 means n = m and wn,m = ∞ means there is not any

direct link between nodes n and m. Weights of this matrix could be time, distance and etc. In doing so, the

transportation system could be modeled via a weight matrix W as below:



W =



w1,1 w1,2 . . . w1,m

w2,1 w2,2 . . . w2,m

...
...

. . .
...

wn,1 wn,2 . . . wn,m


(1)

The scheduling time horizon is divided into multiple equal time slots indexed by t ∈ T = {1, 2, ..., |T |}

Interactions among components are described as follows. At each time slot, as demonstrated in Fig. 1, firstly

each A-EV sends its request for charging/discharging service along with its current location, state of charge,

battery details and also weights of the optimization based on its own preferences to a nearby edge server.

Then, according to the traffic data captured by UAVs, the edge server determines the nearest path to the

nearby PLs using the Floyd algorithm [13]. Indeed, at each time slot, the weight matrix W is updated by

edge servers based on real-time traffic flow. After finding optimal paths, the edge server checks which PLs are

reachable to the A-EV according to its current state of charge (SoC). In the next step, the edge server runs an

optimization problem using a greedy-based algorithm with internal heuristics to find out which PL is the best

one according to the A-EV preferences. The proposed optimization problem is formulated as a multi-objective

problem that provides flexibility in PL selection based on the cost and waiting time objectives. At the end

of the optimization, the outputs, which are a PL and a path, are sent to the A-EV. At the final step, a local

optimizer is run for the allocated A-EV by the selected PL to optimally determine the charging/discharging

scheduling. In short, the main objectives of the proposed Edge-UAV assisted charging/discharging of A-EVs

are summarized below.

• The Best Parking Lot Selection: The best parking lot for on-move A-EVs is decided by a nearby edge

server based on a multi-objective function. The multi-objective function includes minimization of the

A-EVs’ charging cost and waiting time. The best PL for A-EVs is selected among the candidate PLs

according to the A-EVs’ preferences between objectives, i.e., waiting time and cost.

• Optimal Trajectory Planning (Parking Lots Location): The determination of the optimal trajectory

to reach the best parking lot in real-time is an essential need for on-move A-EVs. The proposed system

aims to find the nearest path based on traveling time according to the real-time traffic flow. The UAVs in

the proposed system are utilized to monitor the vehicles’ traffic density on different roads in real-time.

To have the minimum latency, the proposed scheme is executed at the edge servers near the A-EVs.

• A-EV Cost Minimization: Once the A-EV reaches the best parking lots, the energy flow between the

power grid and A-EV is performed by executing an efficient scheduling algorithm with the objective of



minimizing the cost.

• Optimal Power Grid Ancillary Services: The scheduling algorithm also takes into account the benefits

to the power grid, i.e., the optimal ancillary services which are the optimal load shifting and peak load

shaving patterns.

It is noteworthy that the extension of the proposed model to traditional EVs is possible but it will be subject

to some modifications as follows: The implementation of the proposed model requires some basic equipment

like communication devices to contact edge servers and traditional EVs do not carry such equipment. There-

fore, implementation of the model on traditional EVs will be subject to installment of communication devices.

Also, the traditional EVs are experiencing high uncertainty due to human behaviors. All the procedure in

the proposed scheduling is done automatically without human intervention. For instance, all the real-time

capacity, real-time load and price of energy which are updated according to the rendered scheduling at each

time slot, will be uncertain in the case of EVs and this might cause different output results.

A. Assumptions

1) In this work, it is assumed that edge servers are stationary and deployed at roadsides near the cellular

wireless communication systems. This assumption is practical in real-world according to [35]. Since

cellular base stations are able to cover an area with a radius of 10 km based on the LoRaWAN com-

munication technology for urban areas [35]-[36], it is practical to assume that with a sufficient number

of edge servers, each A-EV will be inside the coverage of at least one edge server.

2) In practice, PLs are built outside of city centers because of low land cost [37]. Based on this policy,

it is assumed that PLs, in addition to charging spaces, have enough space for A-EVs which are in the

queue. Therefore, in this work, queuing space is not checked by edge servers. Further, it is assumed

that all the considered PLs are in-service during the scheduling time horizon and disabled PLs, as well

as special needs PLs, are excluded in this work.

3) Since the majority of the vehicles in urban areas are cars, big vehicles such as buses and trucks are

not taken into consideration in this work. However, it is noted that the generality of the model will not

be lost by considering big vehicles, just minor modifications will be needed. For instance, big vehicles

might not be allowed to use every road in the transportation networks which affects their SoC level.

4) Regarding data transmission, it is assumed that data is transmitted among technologies properly without

interruption. Considering fault data injection and any other uncertainty concerns data is out of scope for

this work and it could be an interesting topic for future works.



Fig. 1: The proposed system architecture

IV. PROBLEM FORMULATION

A. A-EV model

Each A-EV, from the electrical perspective, is a mobile battery energy storage system with the capacity of

Bi(kW ). The SoC of A-EVs’ battery at each time slot t ∈ T is denoted by the following equations.

SoCi,k,t = (1− βi)SoCi,k,t−1 + ηi.ei,k,t.∆t (2)

Where, in Eq. (2), the decision variable ei,k,t(kW ) represents the amount of power that A-EV i receives

(ei,k,t > 0) or delivers (ei,k,t < 0) at PL k and time slot t; 0 ≤ β ≤ 1 is the self-discharging coefficient and

0 ≤ η ≤ 1 is charging efficiency. The amount of consumed energy for traveling distance d(km) depends on

A-EVs’ motor force F i(kWh/km) and can be derived by F i.d.

Further, each electrical battery has operation costs OCi,k,t including degradation DCi,k,t, fluctuation

FCi,k,t and maintenance MCi,k,t as shown in Eq. (3). ζDC /ζFC are degradation and fluctuation costs

coefficients [38]. The degradation cost has two terms to be computed which are given in Eq. (4). DCi,k,t
Cal and

DCi,k,t
Cyc are related to calendar and cycle degradation costs that can be calculated via Eqs. (5) and (6), respec-

tively. ωi and γi are fitting parameters; θi is the battery temperature; αi
1,αi

2,αi
3 are fitting parameters associated

with battery depth of discharging and βi
1,βi

2,βi
3,βi

4 are fitting parameters related to charging/discharging power.

Battery fluctuation cost is due to variation of charging/discharging power during time slots which can be



obtained by Eq. (7).

OCi,k,t = ζDCDCi,k,t + ζFCFCi,k,t +MCi,k,t (3)

DCi,k,t = DCi,k,t
Cal +DCi,k,t

Cyc (4)

DCi,k,t
Cal = Bi.eSoCi,k,t/ωi

.eθ
i/γi

.
√
∆t (5)

DCi,k,t
Cyc =

[
αi
1(B

i − SoCi,k,t)2 + αi
2(B

i − SoCi,k,t) + αi
3].

[
βi
1|ei,k,t|3 + βi

2|ei,k,t|2 + βi
3|ei,k,t|+ βi

4] (6)

FCi,k,t = (ei,k,t − ei,k,t−1)2 (7)

B. Traveling time

In this work, weights of the matrix W in Eq. (1) are defined as traveling time since the goal is to find

the nearest way to reach the parking lot in the minimum time. To do so, let τ0n,m denote the traveling time

between nodes n and m without considering traffic flow and it can be calculated through Eq. (8), in which

ln,m(km) is the associated path length and vn,m(km/h) is the maximum allowed speed. However, in the real

world, τ0n,m is uncertain due to traffic congestion. To cope with this issue, the Bureau of Public Roads (BPR)

function, i.e., Eq. (9), is used to compute the traveling time with considering traffic flow [39], where f t
n,m

is the traffic flow at time slot t and f cap
n,m is the capacity of the link. Accordingly, τ tn,m could be considered

as weights in matrix W . Further, since the traveling time of each vehicle on roads depends on the average

speed of the traffic vtr,tave(km/h) and the vehicle’s speed vi,tave(km/h), the final traveling time of each vehicle

is given by (10). Indeed, traffic signals sent by UAVs impact parameters f t
n,m and vtr,tave at each time slot to

capture the real-time traffic flow and average traffic speed, respectively. According to the BPR function, by

increasing the number of vehicles in roads, the traffic flow (f t
n,m) increases and subsequently the traveling

time goes up.

τ0n,m =
ln,m
vn,m

(8)

τ tn,m = τ0n,m
[
1 + 0.15(

f t
n,m

f cap
n,m

)4] (9)

τ i,tn,m = τ tn,m ×
vtr,tave

vi,tave

(10)



C. Waiting time at PLs

Since the waiting time is highly contributed to user satisfaction, it is taken into consideration in this work.

Waiting time is the time that an A-EV must be wait to receive charging/discharging service. The waiting

time of each PL at time t is denoted by T i,k,t(h) and is equal to the minimum of the duration time of the

connected A-EVs which is given by Eq. (11).

T i,k,t = min {xi,k,t(Di,k − t)} (11)

D. Energy utility pricing

Among a lot of pricing models in the literature, the real-time pricing (RTP) policy has been well-accepted

since as it can generate quite fair prices based on the current load to motivate A-EVs to get a roll in grid

response programs [40]. To do so, Eq. (12) is used when the load on the power grid is positive, which is

a linear function of load. ak0($kWh) and ak1($kWh/kW ) are intercept and slope coefficients, respectively.

For the negative loads, Eq. (13) is used, which denotes the energy-buyback step pricing model. This pricing

policy motivates A-EVs to sell their surplus energy to the power grid in negative load periods and achieve

a high amount of profit. mk(kW ) and δk($/kWh) are step length and incremental price in this relation,

respectively. Also, zk,t in both equations represents the load on parking lots that is given by Eq. (14), where

Lk,t(kW ) is the base load and xi,k,t is a binary decision variable that indicates A-EVs assignment to parking

lots, i.e., xi,k,t = 1 means A-EV i has selected PL k.

pk,tz = ak0 + ak1z
k,t (12)

pk,tz = (|zk,t|/mk)δk (13)

zk,t = Lk,t +
∑

i∈I xi,k,t.ei,k,t (14)

E. Multi-objective function

The multi-objective function of the proposed model is the minimization of the weighted sum of the nor-

malized cost and waiting time as formulated through Eq. (15). Since Cost($) and T k,t(h) have different

units, their normalized term, i.e, C̃ost and T̃ k,t, are used in the objective function. Accordingly, decision

making, in addition to the cost, depends on waiting time which contributes to user satisfaction. 0 ≤ ϕ ≤ 1 is

the weight parameter. By increasing the value of ϕ, the cost term becomes prior to the waiting time where

ϕ = 1 indicates the waiting time is ignored and the decision making completely depends on cost. In contrast,

for lower ϕ, the waiting time is prior to the cost and for ϕ = 0 the impact of cost is neglected. The Cost

term is defined as Eq. (16). The revenue of each A-EV is computed by integrating over price given by Eq.



(17). Constraints of the problem are defined through (14) and (18)-(27). Eq. (18) states the non-preemptive

assignment of A-EVs to PLs and ensures that A-EVs are allocated to the same PL during their service. Eqs.

(19)-(20) state that every A-EV must be allocated to a PL and cannot be allocated to more than one PL. Eq.

(21) limits the number of allocated A-EVs to the PLs according to their capacity. At the end of the service,

each A-EV’s demand must be met and must not exceed its battery capacity, which is considered using Eqs.

(22)-(23). The rate of the charging/discharging of A-EVs must be limited according to physical issues and

in this work, these constraints are taken into consideration by (24)-(26). Finally, Eq. (27) calculates each

A-EVs’ SoC at the time of arriving to the PLs.

of : min
∑

k∈K
∑

i∈I
∑

t∈T
[
ϕC̃ost+ (1− ϕ)xi,k,t.T̃ i,k,t] (15)

Costi,k,t = xi,k,t
[
OCi,k,t −Revenuei,k,t] (16)

Revenuei,k,t = −
∫ zk,t+ei,k,t

zk,t

pk,tz dz (17)

subject to

Eq. (14)∑Di,k

t=Ai,k xi,k,t = {0, Vi}; ∀i ∈ I,∀k ∈ K (18)

∑
k∈K

∑Di,k

t=Ai,k xi,k,t ≥ 1; ∀i ∈ I (19)

xi,k,t.xi,k′,t′ = 0; ∀k ̸= k′ ∈ K, Ai,k ≤ t ≤ Di,k, Ai,k′
≤ t′ ≤ Di,k′

(20)

∑
i∈I xi,k,t ≤ C

k
; ∀k ∈ K,∀t ∈ T (21)

∑
k∈K xi,k,t=Ai,k

.
[
SoCi,k

ini +
∑Di,k

t=Ai,k xi,k,t.ei,k,t] = SoCi
fin (22)

0 ≤ SoCi,k
ini +

∑Di,k

t=Ai,k xi,k,t.ei,k,t ≤ Bi/∆t; ∀i ∈ I,∀k ∈ K, Ai,k ≤ t ≤ Di,k (23)

0 ≤ ei,k,t ≤ P
i

chr; ∀i ∈ ICHG,∀k ∈ K,∀t ∈ T (24)

−P i

dch ≤ ei,k,t ≤ 0; ∀i ∈ IDCG,∀k ∈ K,∀t ∈ T (25)

−P i

dch ≤ ei,k,t ≤ P
i

chr; ∀i ∈ IV 2G,∀k ∈ K,∀t ∈ T (26)



SoCi,k
ini = SoCi − F i.di,k; ∀i ∈ I,∀k ∈ K,∀t ∈ T (27)

V. ONLINE GREEDY-BASED SOLUTION APPROACH

A. Algorithm design

The proposed MINLP is intractable due to the binary variable associated with A-EVs allocation to PLs.

On the one hand, standard solvers could not be used because the problem is non-convex. On the other hand,

the hybrid approach of branch and bound along with linear relaxation programming still infeasible to apply

since the high number of A-EVs and time slots incurred computationally burden. Moreover, unavailability

of future data in real-time implementation makes the branch and bound infeasible as well. Hence, in order

to overcome these issues, a greedy-based algorithm is designed as Algorithm 1.

At each time slot t, at first, A-EVs send their request for edge servers. Some initial data including location,

SoC level and technical data of battery is transmitted to a nearby edge server. All the calculations regarding

trajectory planning and scheduling are based on the initial location that has been sent to the edge servers

and since the greedy algorithm is a fast-response algorithm, being on-road while the edge servers process

the request for A-EVs does not affect the traveling time and trajectory planning. Edge servers execute the

Floyd algorithm by receiving data from the UAVs to find the nearest paths to PLs from every node in the

transportation system based on the hourly traffic congestion inroads (line 4). Then, for each A-EV i that

submits a request, all the related data including location, battery details, initial and final SoC, arrival and

departure time and motor force are transmitted to the nearby edge server (lines 5-7). At the next step, the edge

server contact with the aggregators to receive PLs data including load, capacity, traffic and prices (lines 8-12).

After that, the edge server checks which PLs could be reached by the A-EV according to the A-EV’s initial

SoC (line 14). Then, the edge server computes the waiting time of the A-EV at each reachable PL based

on the received data from the corresponded aggregator (line 15). The following step is executing heuristics

according to the A-EV type which is described in the following.

As shown in the algorithm, there are three heuristics according to the A-EV type that are executed during

the procedure, i.e., cost chargingi,k, cost dischargingi,k, cost V 2Gi,k. These heuristics are solved to

determine the incurred cost at candidate PLs if the A-EV has been assigned to them. In cost chargingi,k,

the charging demand of A-EV is divided equally between available time slots as Eq. (28). Then, the amount of

charging power at each time slot is updated based on the power price at that time slot and the average power

price during the interval through consecutive iterations, in which the number of iterations is equal to the time

slots in the interval, i.e., Ai,k ≤ t ≤ Di,k. At the next phase, at each time slot Ai,k ≤ t′ ≤ Di,k Eq. (29) is

used to update the charging power, where Phii,k,t
′

t is the charging power at time slot t′ and iteration t and



pavez is the average of the price at charging interval. In Eq. (29), relation I is a coefficient in which it increases

if the price at the time slot t′ is less than the average, and decreases whenever the price at the current time slot

is higher than the average. Therefore, in addition to the load, the price is also updated at each iteration for use

in the next iteration. At the end of the last iteration, the algorithm sets e initiali,k,t = Φi,k,t
Di ; ∀Ai ≤ t ≤ Di.

A similar procedure is executed for cost dischargingi,k with the only difference in updating of power, in

which in the discharging case if the price at a time slot is lower than the average, the discharging power

decreases, and the reverse action occurs if the price is higher than the average. For the cost V 2Gi,k, if the

A-EV has been applied to charging mode, then the cost chargingi,k procedure is taken into consideration

and if it has been applied in the discharging mode, the cost dischargingi,k will be operated.

SoCi
fin − SoCi,t=Ai,k

Di,k −Ai,k
(28)

Φi,k,t′

t =


[pavez − (pk,t

′

z )

pavez

]
︸ ︷︷ ︸

I

Φi,k,t′

t−1 ; Ai,k ≤ t′ ≤ t

SoCi
fin−SoCi,t=Ai,k

−
∑t

t′′=Ai,k Φ
i,k,t′′

t
Di,k−t

; t ≤ t′ ≤ Di,k

(29)

After completing the algorithm, a target PL is selected for each A-EV. It means that the binary variable

xi,k,t associated with PL assignment is already relaxed and the remained problem is an NLP with a decision

variable ei,k,t. To determine this variable, i.e., the actual amount of charging/discharging power at each time

slot, a local optimizer considering power grid ancillary services has been taken into consideration as below:

min
[√√√√√ 1

Di,k −Ai,k

Di,k′∑
t′=Ai,k′

(
zk′t′ + e actuali,k′t′ − zk

′)2] (30)

subject to Eqs. (23)-(29)

Indeed, the objective function of (30) is the root mean square deviation and tries to minimize the deviation

of the final load from the average load which is totally in accord with power grid ancillary services.

B. Complexity and optimality

At each time slot, first of all, the Floyd algorithm is run, which has the complexity of O(|M|3). Considering

that every A-EV sends a request for receiving service, it takes complexity with third order, i.e., O(|T |3).

Since there are |S| edge servers, the selection of PLs using a linear function adds complexity O(|I|/|S|).

Also, solving the local optimization problem in (30) yields a complexity of O(|T |
√
|T |). All in all, the



Algorithm 1 The proposed greedy-based algorithm for the Edge-UAV problem
Data: Set of A-EVs, edge servers, UAVs, PLs, aggregators, A-EVs’ data (location, battery details,

SoCi,t,SoCi
fin,F , PLs’ data from aggregators (zk,t,Lk,t,C

k
,ak0 ,ak1 ,mk,δk), traffic data from UAVs

Result: xi,k,t,ei,k,t and a path to the target PL
for each time slot t ∈ T do

run the Floyd algorithm and extract successor matrix;
for each A-EV i ∈ I do

if A-EV i submits a request for charging/discharging then
send A-EV’s request and data to the nearby edge servers s ∈ S;

for each aggregator g ∈ G do
for each PL k ∈ Cg do

send PLs data to the edge servers
end

end
for every nearby PL s ∈ S do

if Soci,t − F i.di,k ≥ 0 then
calculate T i,k,t;

if i ∈ ICHG then
run cost chargingi,k;

else
if i ∈ IDSG then

run cost dischargingi,k;
else

run cost V 2Gi,k;
end

end
calculate e initiali,k,t;

end
end
xi,k,t ← arg min

[
ϕC̃ost+ (1− ϕ)xi,k,t.T̃ i,k,t

]
;

run local optimizer (30) s.t. (23)-(29);

eactual
i,k,t ← arg min

[√
1

Di−Ai

∑Di,k′

t′=Ai,k′
(
zk′t′ + e actuali,k′t′ − zk

′)2];
update zk,t, pk,tz

end
end

end

whole complexity of the problem is O(|T |.|M|3 + |T | |I||S| (|T |
3 + |K|

|S| + |T |
√
|T |)). Compared to the central

cloud-based system, which is O(|T |.|M|3+ |T |.|I|(|T |3+ |K|+ |T |
√
|T |)) the complexity has considerably

reduced and the scalability of the system increases.

As stated in section V-A, a greedy-based algorithm solves the PL selection problem. Since the greedy-based

algorithm has been designed using heuristics, a globally optimal solution cannot be achieved, therefore, the

proposed algorithm provides a sub-optimal solution. Let ρ1,ρ2,ρ3 denote approximation factors for, respec-

tively, optimal trajectory planning, PL selection based on the greedy-based algorithm and charging/discharging

power scheduling at each time slot. Regarding the first part, the Floyd algorithm has been used and the



optimality has been guaranteed. For the second part, the problem could be devoted to identical machines as a

minimum makespan scheduling problem that the upper bound for such problem is equal to 2 [41]. In addition,

as for the charging/discharging scheduling part a standard solver is employed, ρ1 = ρ3 = 1. Therefore, the

existing optimality gap is not greater than ρ ≤ ρ1.ρ2.ρ3 = 2 and the results are reasonable.

VI. RESULTS AND DISCUSSION

A. Simulation setup

The presented Edge-UAV-assisted online trajectory planning and charging scheduling of A-EVs is rendered

on the Sioux Falls transportation network (TN). The test system, which has been shown in Fig. 2, comprised

24 nodes and 76 links between nodes. The full data of the TN parameters and daily origin-destination trip

demand is available in [42]. Further, the hourly traffic pattern, as depicted in Fig. 3-a, has been extracted from

[43]. In this work, the distances between nodes have been quadrupled and the daily demand has been scaled up

8 times. It is assumed that five edge servers are installed beside the cellular base stations which cover an area

with a radius of 10 km based on the LoRaWAN communication technology for urban areas. In addition, five

aggregators and 12 parking lots have been considered and the average initial load of PLs is illustrated in Fig.

3-b. The proposed problem is run for 1000 on-move A-EVs, which are randomly distributed in the TN. Six

different types of A-EVs are considered in the simulation with the battery details same as Table III. The data

in this table is belong to popular existing EVs’ batteries and has been obtained from [44]. The temperature

of batteries is a random selection from the uniform interval U [−20◦C, 60◦C]. The fitting parameters of the

degradation and calendar costs are ωi = −3.8898, γi = −6.9242, αi
1 = 4.24× 10−8, αi

2 = −4.24× 10−7,

αi
3 = 8.2× 10−6, βi

1 = −1.2, βi
2 = 3.84, βi

3 = −2.3, βi
4 = 0.66, which they have been derived from [45]

based on experimental results. It is noted that fitting parameters have been considered the same for all A-

EVs. Coefficients of degradation and fluctuation costs are considered ζDC = 1× 10−3 and ζFC = ×2× 10−3

according to the ref. [38]. Moreover, maintenance costs could be obtained from the interval U [$0.3, $0.5] [2].

Regarding energy utility pricing parameters, the linear pricing parameters is selected from the uniform in-

terval ak0 ∈ U [10−3 − 5× 10−4, 10−3 + 5× 10−4] and ak1 ∈ U [2× 10−3 − 5× 10−4, 2× 10−3 + 5× 10−4]

whereas the step length and incremental coefficients in the energy-buyback step pricing model are selected

from form the uniform intervals mk ∈ U [5kW, 10kW] and δk ∈ U [$/kWh0.1, $/kWh0.3], respectively [12].

Table II shows charging levels according to SAE J1772 standard [44]. Among different charging levels,

charging level I is inefficient for smart charging which the charging power is adjusted at each time slot.

Moreover, using this charging level A-EVs cannot be fully charged in public parking lots and it is suitable

for residential cases. Charging level III is not available at standard parking lots due to the high current rate



TABLE II: Charging levels based on SAE J1772 standard
Charging level Voltage (V) Power (kW)
Level I (AC) 120 1.44-1.92
Level II (AC) 240 Up to 19.2
Level III (DC) 200-450 Up to 36

TABLE III: Battery details of considered A-EVs

A-EV type Battery type Battery capacity Bi (kW) Electric motor force F i (kWh/mile)
I Lithium-ion 75.0 0.33
II Lithium-ion 75.0 0.34
III Lithium-ion 30.0 0.28
IV Lithium-ion 90.0 0.36
V Lithium-ion 35.0 0.26
VI Lithium-polymer 30.5 0.27

as the power distribution system cannot supply this current rate. However, charging level II is most suitable

for PLs and can be implemented at the power distribution level easily. Therefore, in this work, it is assumed

that all the considered PLs supply charging level II with the maximum charging power of 19.2 kW [44].

All simulations have been conducted in a PC with Intel® CoreTM i7-4710HQ CPU @ 2.5 GHz and 8GB

RAM using MATLAB R2019b, which the CVX package has been used for solving the local optimizer. The

following metrics are used for comparison:

• Average cost: One of the important factors in PL selection is charging/discharging cost. Therefore, the

average cost of charging/discharging service of vehicles is reported as an evaluation metric. This metric

is the ratio of the summation of all A-EVs total cost to the number of A-EVs.

• Average waiting time: This metric reports the average waiting time of A-EVs at PLs as the waiting

time of PLs directly affects the best PL selection. This metric is the ratio of the summation of all A-EVs

waiting time to the number of A-EVs.

• Average Traveling time: In trajectory planning, average traveling time is one of the user satisfaction

and it is reported as a comparison criterion. This metric is the ratio of the summation of the traveling

time of all A-EVs to the number of A-EVs.

• Average Traveling distance: This metric is also reported since contributes to user satisfaction in

trajectory planning. This metric is the ratio of the summation of the traveling distance of all A-EVs to

the number of A-EVs.



Fig. 2: The test system based on the Sioux Falls transportation network

Fig. 3: (a) Hourly traffic pattern (b) Hourly average load

B. Simulation result

1) Impact of the weighting factor

In this part, the impact of the weighting factor (ϕ) on the decision-making of PL selection for A-EVs is

evaluated. To do so, the problem has been run for different values of ϕ starting from 0 to 1 with 0.1 intervals.

The obtained results have been depicted in Fig. 4. In general, by increasing the value of the weighting factor,

the average cost decreases, and the average waiting time of PLs increases. As can be seen, the maximum

amount of the average cost, which is $1.636, and the minimum amount of the average waiting time, which

is 10.00 min are occurred for ϕ = 0, which the PL selection is completely based on the waiting time of



Fig. 4: Average cost and waiting time for different values of the weighting parameter

PLs and the cost term has been ignored. By increasing the amount of ϕ, the average cost declines and the

weighting time climbs as the decision making is going to be based on the cost for ϕ = 1. At this point, the

average cost is fallen to $1.354 with $0.282 drop, where the waiting time witnesses its maximum at 32.37

min with a 22.37 min growth. Although this is a multi-objective problem and a compromise could be derived

for objectives, the decision-maker, i.e., edge-servers, lets users submit their preferences over time and cost

in an online platform since in the real-world different users might have different preferences.

2) Trajectory planning

As mentioned before, the trajectory planning is carried out based on traveling time considering traffic

flow. However, as various strategies have been proposed in different works for trajectory planning, such as

in [13], [22] that traveling time has been taken into consideration without considering traffic flow, in this

section, different strategies including trajectory planning based on traveling time with considering traffic flow,

trajectory planning based on traveling time without traffic flow and trajectory planning based on roads’ length

are compared. First of all, as can be seen from Fig. 5 waiting time for all strategies remained the same since

the trajectory planning only deals with path selection for target PLs and does not affect the waiting time

of PLs. However, the average cost slightly falls for the second and third strategies. This is because, in the

trajectory planning based on traveling time with traffic flow, the edge servers guide A-EVs to the PLs through

less congested paths. Hence, this issue leads to a drop in the SoC level of A-EVs while arriving at the PLs.

In order to provide a comprehensive result Table IV is provided for ϕ = 1. As enumerated, average

cost, average traveling time and average distance have reached, respectively, $1.354, 17.25 min and 14.49

km. Although all these parameters have decreased in the case without considering traffic, these results are

unrealistic because in real-world traffic has a great impact on traveling time. Further, in the third strategy,

the average cost has decreased because of less traveling distance; however, the average traveling time rose.

Compared with the first strategy, the average cost reduction is negligible, where the increment of average



Fig. 5: Impact of the different strategies for trajectory planning

TABLE IV: Comparison of different strategies in trajectory planning for ϕ = 1

Strategies Average cost ($) Average traveling Average traveling
time (min) distance (km)

Traveling time considering traffic 1.345 17.25 14.49
Traveling time without traffic 1.349 15.3 14.15
Length 1.45 17.84 14.07

traveling time is nearly 1 min per A-EV. Indeed, by employing a decentralized platform using edge servers, A-

EVs are guided to nearby PLs which are close to physical distance. Hence, the important factor for trajectory

planning is traveling time by considering the traffic flow, which has reached 17.25 min per A-EV, which

could improve user satisfaction. Moreover, in doing so, there is no need for considering multiple weightings

by adding weighting factors in trajectory planning like ref. [13] since tuning these factors is another complex

issue.

3) Impact of the V2G

In this subsection, the impact of the V2G is evaluated in two respects. Firstly, in Fig. 6, variation of load

in two of the most congested PLs has been demonstrated for ϕ = 1. Overall, by increasing the percentage

of the V2G participants, the load of the PLs during off-peak hours goes up and during on-peak hours goes

down. For instance, in Fig. 6-(a), during hours t = 2−5, 10, 17−18, 23−24 load of the PL has been climbed

and during hours t = 6− 9, 11− 16, 19− 20 it has been declined. The main reason is V2G capable A-EVs

act like energy storage systems that are available for a specific time period. Hence, they can be applied in

charging mode during off-peak hours and then discharged during on-peak hours. A similar pattern is obvious

for Fig. 6-(b) that during t = 2− 5, 17− 24 load has been increased and during a period between t = 7− 16

has been decreased.

Accordingly, the V2G ability assists the power grid in peak load reduction which provides ancillary service

for the grid. On the other hand, providing ancillary services for the grid benefits V2G in economic terms.



Fig. 6: Impact of the V2G ability on loads of (a) PL#6 (b) PL#9 for ϕ = 1

Fig. 7: Impact of the V2G ability on the average cost

A-EVs by charging during off-peak periods, in which the electricity price is low, and discharging during

on-peak hours, when the electricity price is high, gain benefits to reduce their costs. Fig. 7 illustrates the

average cost concerning the percentage of V2G participants and the weighting factor. As can be seen, by

increasing the V2G participants, the average cost has a downward pattern, in which the minimum achievable

average cost is $0.656 (about 61.15% reduction) for ϕ = 1 and 100% V2G participants. Therefore, the V2G

can provide a win-win outcome for the both power grid and A-EVs in an online scheduling platform in light

of the proposed algorithm.

4) Impact of the local optimizer

After allocating an A-EV to a PL the charging/discharging scheduling of the A-EV is scheduled using

a local optimizer. To show the positive impact of the local optimizer, Fig. 8-(a) has been provided. In this

figure, the average final load in the presence of the local optimizer and without the local optimizer has been

depicted. Accordingly, the flatness of the load, meaning how much deviation the load has from its average,

by implementing the local optimizer is improved about 12.42% compared with the non-local optimizer case



Fig. 8: Impact of the local optimizer on the (a) average final load for ϕ = 0.5 and (b) average cost

on the ground that the local optimizer, for example in the charging scheduling, reduces the charging power

during the on-peak hours and increases the charging power during the off-peak hours. Furthermore, the

average cost for the different amounts of weighting factors by implementing the local optimizer and without

the local optimizer has been compared in Fig. 8-(b). As shown in the illustration, employing the proposed

local optimizer brings economic benefits for A-EVs because of the mentioned reason for the load as the price

is a function of the load. Therefore, it can be concluded that the local optimizer has the potential to provide

both fiscal and non-fiscal benefits.

5) Comparison with other works

In this subsection, the current work is compared with other works in terms of the defined metrics. To do

so, two different strategies are defined: 1- Random selection: in this strategy, which has been employed in

[46], A-EVs are guided to nearby PLs randomly after submitting their requests. 2- Near PL allocation: in this

strategy, which has been used in [47], A-EVs are guided to the nearest PLs in terms of traveling time. The

comparison is conducted for different numbers of A-EVs. It is noted that in the comparison, in the proposed

Edge-UAV model, the weighting factor is set to ϕ = 0.5.

The obtained results for comparison have been depicted in Fig. 9. In terms of the average cost, as can be

seen in Fig. 9-(a), by using the proposed Edge-UAV algorithm for PL selection, the average cost is lower

than the other two strategies. It can be clearly observed that the Edge-UAV achieves a noticeable reduction

in average cost by $0.289 (19.17%) compared to Random selection and by $0.425 (28.17%) compared to

the Near selection methods. By increasing the number of A-EVs, the reduction has reached $1.170 (30.65%)

between the proposed and Random methods as well as $0.997 (26.11%) between the proposed and Near

methods.

In terms of average waiting time, which is shown in Fig. 9-(b), the proposed method outperforms other

methods. For 1000 A-EVs, the average waiting time for the proposed method is 16.806 min; however, this



Fig. 9: Comparison of the edge-UAV with other works in terms of (a) average cost (b) average waiting time
(c) average traveling time (d) average traveling distance

amount for the Random and Near methods is 26.04 min and 28.752 min, respectively. By rising the number

of A-EVs, the average waiting time in PLs is rose as the PLs host more A-EVs. In the case of Edge-UAV,

the growth is 44.094 min; however, for Random and Near methods, this amount is 61.56 min and 51.04,

respectively. Considering the limited capacity of PLs in the real world, PLs could be very congested in

Ransom and Near methods for the higher number of A-EVs which this issue decreases user satisfaction since

they should wait for long hours to receive charging services; however, this could be handled in the proposed

Edge-UAV method.

Moreover, looking at Fig. 9-(c), it can be perceived that the minimum average traveling time is achieved in

the proposed Edge-UAV method because employing UAVs for traffic monitoring in trajectory planning has

been ignored in other methods. Yet, in order to minimize the traveling time, A-EVs might be guided through

longer paths as shown in Figure 9-(d). Although average traveling distance is increased in the Edge-UAV

method and A-EVs witness a drop in their SoC levels, it does not have a great impact on their cost compared

to other methods as shown in Fig. 9-(a). The reason is the cost term has been included in the PL selection

and the best PL is selected for A-EVs considering their costs. However, in the other two methods cost and

traffic have not been considered neither in PL selection nor trajectory planning.



6) Edge-UAV performance comparison with the cloud-based system

In order to compare the proposed decentralized Edge-UAV model with the centralized cloud-based system,

the waiting factor is set to ϕ = 0.5. The performance of both systems is evaluated in four terms including

average cost, average waiting time, average traveling time and average traveling distance.

As shown in Fig. 10-(a), the performance of the cloud-based system is better than the edge-UAV system in

terms of average cost. For 1000 A-EVs, the cloud-based system could reach $0.096 (6.8%) less cost than the

edge-UAV system. This amount for 2000 A-EVs increased to $0.204 (5.6%). The reason is in the cloud-based

system, all the PLs data is available to the central operator. Therefore, the target PLs are selected among all

PLs which leads to a reduction in the average cost. For the same reason, the average waiting time is decreased

in the cloud-based system as demonstrated in Fig. 10-(b). For 1000 A-EVs, the average waiting time in the

cloud-based system is 14.7 min while in the Edge-UAV system is 16.806 min since the decentralized system

is selecting target PLs among a limited number of PLs. However, in terms of average traveling time and

average traveling distance, the performance of the cloud-based system is worse than the Edge-UAV system.

The traveling time, as shown in Fig. 10-(c), is increased dramatically in the cloud-based system. For 1000 and

2000 A-EVs, the average traveling time for the cloud-based system is 18.4 min and 19.6 min, respectively.

However, these values for the edge-UAV system are 16.52 min and 16.78 min, respectively. Further, the

average traveling distance is grown in the cloud-based system compared to the edge-UAV system as depicted

in Fig. 10-(d). The average traveling distance witnessed a rise of about 1.67 km and 4.52 km for 1000 and

2000 A-EVs, respectively. The reason for increasing the average traveling time and average traveling distance

in the cloud-based system is that the cloud-based system for reducing the objective function, i.e., cost and

waiting time, might select some PLs as target PLs for A-EVs which are far away. In other words, the traveling

time and traveling distance are sacrificed to reach less cost and waiting time. Another notable point is that

by looking closely at Fig. 10-(c) and (d), by increasing the number of A-EVs, the average traveling time

and average traveling distance are still very close to each other since nearby PLs are selected for A-EVs.

However, in the cloud-based system, they have ascending pattern which reduces user satisfaction.

In order to improve the performance of the edge-UAV system for reaching better results in terms of cost

and waiting time, increasing the number of aggregators is a feasible solution. Fig. 11 shows the obtained

results for 1000 A-EVs, weighting factor ϕ = 0.5 and the different number of aggregators. As it is observed,

by increasing the number of aggregators, the average cost and average waiting time are declined, in which

for 10 aggregators, the average cost is $1.426, and the average waiting time is 15.59 min. As can be seen,

the gap is fallen in comparison with the cloud-based system. This is because by increasing the number of



Fig. 10: Edge-UAV performance comparison with the cloud-based system in terms of (a) average cost (b)
average waiting time (c) average traveling time (d) average traveling distance

Fig. 11: Impact of the number of aggregators on (a) average cost and waiting time (b)average traveling time
and average traveling distance

aggregators data of more PLs are available for edge servers. On the other hand, average traveling time and

average traveling distance are gone up as more PLs are available for edge servers and edge servers might

guide A-EVs to farther PLs in order to reach better objectives. In the end, Table V shows execution time for

different number of A-EVs. As is obvious, the execution time of the proposed model per A-EV is less than

one second which shows the applicability of the proposed model in real applications. It is noteworthy that

one of the reasons for low execution time is the designed greedy-based algorithm to tackle the intractability

of the MINLP.



TABLE V: Execution statistics

Number of A-EVs Execution time (sec) Average execution time (sec)
1000 269 0.269
1500 408 0.272
2000 543 0.272

VII. CONCLUSION

Advent of autonomous electric vehicles (A-EVs) has opened new research areas regarding trajectory

planning and charging scheduling of these vehicles. The presented work aimed to introduce a hierarchical

user-driven trajectory planning and charging scheduling of on-move A-EVs. The proposed trajectory planning

was based on traveling time considering real-time traffic flow captured by unmanned aerial vehicles (UAVs).

To improve the scalability, security and user satisfaction, the mobile edge computing (MEC) system was

employed to break the central cloud-based system into multiple decentralized subsystems. Comparison with

other methods revealed the superiority of the proposed model by reducing average cost by 19.17% with respect

to the Random selection and 28.17% respect to the Near selection methods. Moreover, in light of using the

vehicle-to-grid (V2G) ability of A-EVs, the average cost could be reduced up to 61.15% in the case of 100%

V2G penetration. In addition, the proposed scheduling contributed ancillary service of the grid by improving

the flatness of the load by 12.42%. In addition, the average waiting time was also reduced by about 9.2 min

and 11.9 min with respect to the Random and Near methods, respectively. Finally, the performance evaluation

of the proposed Edge-UAV system with the cloud-based system showed that although the performance of

the cloud-based system is better than the proposed edge-UAV system by about 6.8% in average cost, using

the edge-UAV system improves user satisfaction in terms of traveling distance and traveling time by 1.67 km

and 1.88 min, respectively.

Future research could be focused on concerning cyber-security and uncertainty associated with data trans-

mission of an Edge-UAV system. Moreover, considering different types of PLs such as disabled and special

needs PLs as well as considering different types of A-EVs such as buses and trucks could be another

interesting area to extend this work.
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