957 research outputs found
The linear Fokker-Planck equation for the Ornstein-Uhlenbeck process as an (almost) nonlinear kinetic equation for an isolated N-particle system
It is long known that the Fokker-Planck equation with prescribed constant
coefficients of diffusion and linear friction describes the ensemble average of
the stochastic evolutions in velocity space of a Brownian test particle
immersed in a heat bath of fixed temperature. Apparently, it is not so well
known that the same partial differential equation, but now with constant
coefficients which are functionals of the solution itself rather than being
prescribed, describes the kinetic evolution (in the infinite particle limit) of
an isolated N-particle system with certain stochastic interactions. Here we
discuss in detail this recently discovered interpretation.Comment: Minor revisions and corrections (including the title
Neurofeedback and the Aging Brain: A Systematic Review of Training Protocols for Dementia and Mild Cognitive Impairment
Dementia describes a set of symptoms that occur in neurodegenerative disorders and that is characterized by gradual loss of cognitive and behavioral functions. Recently, non-invasive neurofeedback training has been explored as a potential complementary treatment for patients suffering from dementia or mild cognitive impairment. Here we systematically reviewed studies that explored neurofeedback training protocols based on electroencephalography or functional magnetic resonance imaging for these groups of patients. From a total of 1,912 screened studies, 10 were included in our final sample (N = 208 independent participants in experimental and N = 81 in the control groups completing the primary endpoint). We compared the clinical efficacy across studies, and evaluated their experimental designs and reporting quality. In most studies, patients showed improved scores in different cognitive tests. However, data from randomized controlled trials remains scarce, and clinical evidence based on standardized metrics is still inconclusive. In light of recent meta-research developments in the neurofeedback field and beyond, quality and reporting practices of individual studies are reviewed. We conclude with recommendations on best practices for future studies that investigate the effects of neurofeedback training in dementia and cognitive impairment
From lab to life: challenges and perspectives of fNIRS for haemodynamic-based neurofeedback in real-world environments
Neurofeedback allows individuals to monitor and self-regulate their brain activity, potentially improving human brain function. Beyond the traditional electrophysiological approach using primarily electroencephalography, brain haemodynamics measured with functional magnetic resonance imaging (fMRI) and more recently, functional near-infrared spectroscopy (fNIRS) have been used (haemodynamic-based neurofeedback), particularly to improve the spatial specificity of neurofeedback. Over recent years, especially fNIRS has attracted great attention because it offers several advantages over fMRI such as increased user accessibility, cost-effectiveness and mobilityâthe latter being the most distinct feature of fNIRS. The next logical step would be to transfer haemodynamic-based neurofeedback protocols that have already been proven and validated by fMRI to mobile fNIRS. However, this undertaking is not always easy, especially since fNIRS novices may miss important fNIRS-specific methodological challenges. This review is aimed at researchers from different fields who seek to exploit the unique capabilities of fNIRS for neurofeedback. It carefully addresses fNIRS-specific challenges and offers suggestions for possible solutions. If the challenges raised are addressed and further developed, fNIRS could emerge as a useful neurofeedback technique with its own unique application potentialâthe targeted training of brain activity in real-world environments, thereby significantly expanding the scope and scalability of haemodynamic-based neurofeedback applications. This article is part of the theme issue âNeurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulationâ
The Quantum Modular Group in (2+1)-Dimensional Gravity
The role of the modular group in the holonomy representation of
(2+1)-dimensional quantum gravity is studied. This representation can be viewed
as a "Heisenberg picture", and for simple topologies, the transformation to the
ADM "Schr{\"o}dinger picture" may be found. For spacetimes with the spatial
topology of a torus, this transformation and an explicit operator
representation of the mapping class group are constructed. It is shown that the
quantum modular group splits the holonomy representation Hilbert space into
physically equivalent orthogonal ``fundamental regions'' that are interchanged
by modular transformations.Comment: 23 pages, LaTeX, no figures; minor changes and clarifications in
response to referee (basic argument and conclusions unaffected
Data-based analysis of speech and gesture: the Bielefeld Speech and Gesture Alignment corpus (SaGA) and its applications
LĂŒcking A, Bergmann K, Hahn F, Kopp S, Rieser H. Data-based analysis of speech and gesture: the Bielefeld Speech and Gesture Alignment corpus (SaGA) and its applications. Journal on Multimodal User Interfaces. 2013;7(1-2):5-18.Communicating face-to-face, interlocutors frequently produce multimodal meaning packages consisting of speech and accompanying gestures. We discuss a systematically annotated speech and gesture corpus consisting of 25 route-and-landmark-description dialogues, the Bielefeld Speech and Gesture Alignment corpus (SaGA), collected in experimental face-to-face settings. We first describe the primary and secondary data of the corpus and its reliability assessment. Then we go into some of the projects carried out using SaGA demonstrating the wide range of its usability: on the empirical side, there is work on gesture typology, individual and contextual parameters influencing gesture production and gesturesâ functions for dialogue structure. Speech-gesture interfaces have been established extending unification-based grammars. In addition, the development of a computational model of speech-gesture alignment and its implementation constitutes a research line we focus on
The potential of hematopoietic growth factors for treatment of Alzheimer's disease: a mini-review
There are no effective interventions that significantly forestall or reverse neurodegeneration and cognitive decline in Alzheimer's disease. In the past decade, the generation of new neurons has been recognized to continue throughout adult life in the brain's neurogenic zones. A major challenge has been to find ways to harness the potential of the brain's own neural stem cells to repair or replace injured and dying neurons. The administration of hematopoietic growth factors or cytokines has been shown to promote brain repair by a number of mechanisms, including increased neurogenesis, anti-apoptosis and increased mobilization of bone marrow-derived microglia into brain. In this light, cytokine treatments may provide a new therapeutic approach for many brain disorders, including neurodegenerative diseases like Alzheimer's disease. In addition, neuronal hematopoietic growth factor receptors provide novel targets for the discovery of peptide-mimetic drugs that can forestall or reverse the pathological progression of Alzheimer's disease
- âŠ