1,416 research outputs found
NMR study of a bimesogenic liquid crystal with two nematic phases
Recent interest in bimesogenic liquid crystals showing two nematic phases has led us to investigate the nematic mean-field interactions in these nematic phases by using rigid solutes as probes. The nematic potential that is modelled by two independent Maier-Saupe terms is successful in fitting the observed dipolar couplings (order parameters) of para-, meta- and ortho-dichlorobenzene solutes in both the nematic phases of 39 wt% of 4-n-pentyl-4′-cyanobiphenyl (5CB) in α,ω-bis(4-4′-cyanobiphenyl)nonane (CB_C9_CB) to better than the 5% level. The derived liquid-crystal potential parameters G₁ and G₂ for each solute in the N and Ntb phases will be discussed. The most interesting observation is that G1 (associated with size and shape interactions) is almost constant in the Ntb phase, whereas G₂ (associated with longer-range electrostatic interactions) has large variation, even changing sign
A fibre forming smectic twist-bent liquid crystalline phase
We demonstrate the nanostructure and filament formation of a novel liquid crystal phase of a dimeric mesogen below the twist–bend nematic phase. The new fibre-forming phase is distinguished by a short-correlated smectic order combined with an additional nanoscale periodicity that is not associated with density modulation
Anomalous increase in nematic-isotropic transition temperature in dimer molecules induced by magnetic field
We have determined the nematic-isotropic transition temperature as a function of applied magnetic field in three different thermotropic liquid crystalline dimers. These molecules are comprised of two rigid calamitic moieties joined end to end by flexible spacers with odd numbers of methylene groups. They show an unprecedented magnetic field enhancement of nematic order in that the transition temperature is increased by up to 15K when subjected to 22T magnetic field. The increase is conjectured to be caused by a magnetic field-induced decrease of the average bend angle in the aliphatic spacers connecting the rigid mesogenic units of the dimers
Dynamical properties of Au from tight-binding molecular-dynamics simulations
We studied the dynamical properties of Au using our previously developed
tight-binding method. Phonon-dispersion and density-of-states curves at T=0 K
were determined by computing the dynamical-matrix using a supercell approach.
In addition, we performed molecular-dynamics simulations at various
temperatures to obtain the temperature dependence of the lattice constant and
of the atomic mean-square-displacement, as well as the phonon density-of-states
and phonon-dispersion curves at finite temperature. We further tested the
transferability of the model to different atomic environments by simulating
liquid gold. Whenever possible we compared these results to experimental
values.Comment: 7 pages, 9 encapsulated Postscript figures, submitted to Physical
Review
Tight-binding study of high-pressure phase transitions in titanium: alpha to omega and beyond
We use a tight-binding total energy method, with parameters determined from a
fit to first-principles calculations, to examine the newly discovered gamma
phase of titanium. Our parameters were adjusted to accurately describe the
alpha Ti-omega Ti phase transition, which is misplaced by density functional
calculations. We find a transition from omega Ti to gamma Ti at 102 GPa, in
good agreement with the experimental value of 116 GPa. Our results suggest that
current density functional calculations will not reproduce the omega Ti-gamma
Ti phase transition, but will instead predict a transition from omega Ti to the
bcc beta Ti phase.Comment: 3 encapsulated Postscript figures, submitted to Phyical Review
Letter
Chemical Kinetic Models for HCCI and Diesel Combustion
Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines
Metallic properties of magnesium point contacts
We present an experimental and theoretical study of the conductance and
stability of Mg atomic-sized contacts. Using Mechanically Controllable Break
Junctions (MCBJ), we have observed that the room temperature conductance
histograms exhibit a series of peaks, which suggests the existence of a shell
effect. Its periodicity, however, cannot be simply explained in terms of either
an atomic or electronic shell effect. We have also found that at room
temperature, contacts of the diameter of a single atom are absent. A possible
interpretation could be the occurrence of a metal-to-insulator transition as
the contact radius is reduced, in analogy with what it is known in the context
of Mg clusters. However, our first principle calculations show that while an
infinite linear chain can be insulating, Mg wires with larger atomic
coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at
liquid helium temperature our measurements show that the conductance histogram
is dominated by a pronounced peak at the quantum of conductance. This is in
good agreement with our calculations based on a tight-binding model that
indicate that the conductance of a Mg one-atom contact is dominated by a single
fully open conduction channel.Comment: 14 pages, 5 figure
Jordan Forms of Real and Complex Matrices Under Rank One Perturbations
New perturbation results for the behavior of eigenvalues and Jordan forms of real and complex matrices under generic rank one perturbations are discussed. Several results that are available in the complex case are proved as well for the real case and the assumptions on the genericity are weakened. Rank one perturbations that lead to maximal algebraic multiplicities of the new eigenvalues are also discussed
Monitoring Replication Protein A (RPA) Dynamics in Homologous Recombination Through Site-specific Incorporation of Non-canonical Amino Acids
An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance
- …