1,422 research outputs found

    The Hatch-Waxman Act and Market Exclusivity for Generic Manufacturers: An Entitlement or an Incentive?

    Get PDF
    One of Congress\u27 central goals in enacting the Hatch-Waxman Act was to expedite and encourage earlier market entry for generic pharmaceutical products. The Act provides that a generic firm may challenge a drug patent during its term by filing paperwork with the FDA that alleges either that its generic product does not infringe the relevant patent, or that the patent is invalid. If the patentee disagrees with the allegation of the generic firm, it may file suit and have a court determine infringement and validity. If the generic firm prevails in court on either count, it may enter the market with its generic drug immediately, despite the patent protection that would have otherwise prevented its market entry. In order to encourage generic firms to pursue such challenges to pioneer patents earlier during the patent terms, Congress included a generic exclusivity provision in the Act, which rewards the first generic firm to challenge a pioneer patent with 180 days of generic market exclusivity, during which time no other generic version of that drug may enter the market. As the provision is currently interpreted, market exclusivity is provided to the generic firm that is first-in-time to file a challenge against the patent, regardless of whether that firm subsequently prevails in establishing patent invalidity or non-infringement. This Note examines the dispute that arose out of the generic exclusivity provision, critiques the current state of generic exclusivity law in light of recent congressional amendments, and proposes that Congress further amend the Act to require forfeiture of generic exclusivity when the first generic firm to file a challenge against the pioneer patent is not also the first to complete a successful challenge to that pioneer patent

    Triple Charmonium Production in pQCD

    Full text link
    We study the role of 121\rightarrow2 and 131\rightarrow3 processes in triple charmonium production. We see that the ratio of effective cross sections of TPS and DPS only moderately depends on charmonium transverse momenta, but the total DPS and TPS cross sections each separately may have rather strong dependence on charmonia transverse momenta in the central kinematics that can be studied experimentally.Comment: 19 pages, 7 figure

    Origin of Superconductivity in Boron-doped Diamond

    Full text link
    Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger than the corresponding quantity in MgB2 that drives its high Tc, leading to very large electron-phonon matrix elements. The calculated coupling strength \lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon coupling the likely mechanism. Higher doping should increase T_c somewhat, but effects of three dimensionality primarily on the density of states keep doped diamond from having a T_c closer to that of MgB2.Comment: Four pages with two embedded figures, corrected fig1. (To appear in Physical Review Letters(2004)

    Noninvasive Measurement of Dissipation in Colloidal Systems

    Full text link
    According to Harada and Sasa [Phys. Rev. Lett. 95, 130602 (2005)], heat production generated in a non-equilibrium steady state can be inferred from measuring response and correlation functions. In many colloidal systems, however, it is a nontrivial task to determine response functions, whereas details about spatial steady state trajectories are easily accessible. Using a simple conditional averaging procedure, we show how this fact can be exploited to reliably evaluate average heat production. We test this method using Brownian dynamics simulations, and apply it to experimental data of an interacting driven colloidal system

    Tight-binding study of structure and vibrations of amorphous silicon

    Full text link
    We present a tight-binding calculation that, for the first time, accurately describes the structural, vibrational and elastic properties of amorphous silicon. We compute the interatomic force constants and find an unphysical feature of the Stillinger-Weber empirical potential that correlates with a much noted error in the radial distribution function associated with that potential. We also find that the intrinsic first peak of the radial distribution function is asymmetric, contrary to usual assumptions made in the analysis of diffraction data. We use our results for the normal mode frequencies and polarization vectors to obtain the zero-point broadening effect on the radial distribution function, enabling us to directly compare theory and a high resolution x-ray diffraction experiment

    Highly parallel multi-physics simulation of muscular activation and EMG

    Get PDF
    Simulation of skeletal muscle activation can help to interpret electromyographic measurements and infer the behavior of the muscle fibers. Existing models consider simplified geometries or a low number of muscle fibers to reduce the computation time. We demonstrate how to simulate a finely-resolved model of biceps brachii with a typical number of 270.000 fibers. We have used domain decomposition to run simulations on 27.000 cores of the supercomputer HazelHen at HLRS in Stuttgart, Germany. We present details on opendihu, our software framework. Its configurability, efficient data structures and modular software architecture target usability, performance and extensibility for future models. We present good parallel weak scaling of the simulations

    Thermal optical non-linearity of nematic mesophase enhanced by gold nanoparticles – an experimental and numerical investigation

    Get PDF
    In this work the mechanisms leading to the enhancement of optical nonlinearity of nematic liquid crystalline material through localized heating by doping the liquid crystals (LCs) with gold nanoparticles (GNPs) are investigated. We present some experimental and theoretical results on the effect of voltage and nanoparticle concentration on the nonlinear response of GNP-LC suspensions. The optical nonlinearity of these systems is characterized by diffraction measurements and the second order nonlinear refractive index, n 2 , is used to compare systems with different configurations and operating conditions. A theoretical model based on heat diffusion that takes into account the intensity and finite size of the incident beam, the nanoparticle concentration dependent absorbance of GNP doped LC systems and the presence of bounding substrates is developed and validated. We use the model to discuss the possibilities of further enhancing the optical nonlinearity

    Pressure Dependence of the Elastic Moduli in Aluminum Rich Al-Li Compounds

    Full text link
    I have carried out numerical first principles calculations of the pressure dependence of the elastic moduli for several ordered structures in the Aluminum-Lithium system, specifically FCC Al, FCC and BCC Li, L1_2 Al_3Li, and an ordered FCC Al_7Li supercell. The calculations were performed using the full potential linear augmented plane wave method (LAPW) to calculate the total energy as a function of strain, after which the data was fit to a polynomial function of the strain to determine the modulus. A procedure for estimating the errors in this process is also given. The predicted equilibrium lattice parameters are slightly smaller than found experimentally, consistent with other LDA calculations. The computed elastic moduli are within approximately 10% of the experimentally measured moduli, provided the calculations are carried out at the experimental lattice constant. The LDA equilibrium shear modulus C11-C12 increases from 59.3 GPa in Al, to 76.0 GPa in Al_7Li, to 106.2 GPa in Al_3Li. The modulus C_44 increases from 38.4 GPa in Al to 46.1 GPa in Al_7Li, then falls to 40.7 GPa in Al_3Li. All of the calculated elastic moduli increase with pressure with the exception of BCC Li, which becomes elastically unstable at about 2 GPa, where C_11-C_12 vanishes.Comment: 17 pages (REVTEX) + 7 postscript figure
    corecore