24 research outputs found

    Applications for next-generation sequencing in fish ecotoxicogenomics

    Get PDF
    The new technologies for next-generation sequencing (NGS) and global gene expression analyses that are widely used in molecular medicine are increasingly applied to the field of fish biology. This has facilitated new directions to address research areas that could not be previously considered due to the lack of molecular information for ecologically relevant species. Over the past decade, the cost of NGS has decreased significantly, making it possible to use non-model fish species to investigate emerging environmental issues. NGS technologies have permitted researchers to obtain large amounts of raw data in short periods of time. There have also been significant improvements in bioinformatics to assemble the sequences and annotate the genes, thus facilitating the management of these large datasets.The combination of DNA sequencing and bioinformatics has improved our abilities to design custom microarrays and study the genome and transcriptome of a wide variety of organisms. Despite the promising results obtained using these techniques in fish studies, NGS technologies are currently underused in ecotoxicogenomics and few studies have employed these methods. These issues should be addressed in order to exploit the full potential of NGS in ecotoxicological studies and expand our understanding of the biology of non-model organisms

    Gene expression changes in the human diaphragm after cardiothoracic surgery

    Get PDF
    ObjectiveWe examined the effects of cardiothoracic surgery, including cardiopulmonary bypass and controlled mechanical ventilation, on messenger RNA gene expression in human diaphragm. We hypothesized that genes responsible for stress response, redox regulation, protein turnover, energy metabolism, and contractile function would be altered by cardiothoracic surgery.MethodsPaired diaphragm biopsy samples were obtained from 5 male patients (67 ± 11 years) during cardiothoracic surgery, the first as soon as the diaphragm was exposed and the second as late in surgery as possible (4.9 ± 1.8 hours between samples). We profiled messenger RNA from 5 specimen pairs with microarray analysis (Hu U133 plus 2.0; Affymetrix UK Ltd, High Wycombe, UK). Quantitative reverse transcriptase polymerase chain reaction was performed with a select set of genes exhibiting differential expression for validation.ResultsMicroarray analysis identified 779 differentially expressed (early vs late samples) unique gene products (P < .005). Postoperatively, genes related to stress response and redox regulation were upregulated. Additionally, we found significantly upregulated expression of cathepsin C (2.7-fold), cathepsin L1 (2.0-fold), various ubiquitin-conjugating enzymes (E2, approximately 1.8-fold), proinflammatory cytokine interleukin 6 (15.6-fold), and muscle-specific ubiquitin ligase (MuRF-1, 2.6-fold). Comparison of fold change values obtained by quantitative reverse transcriptase polymerase chain reaction and microarray yielded significant correlation (r = 0.95, P < .0001).ConclusionsCardiothoracic surgery results in rapid changes in human diaphragm gene expression in the operating room, including genes related to stress response, inflammation, redox regulation, and proteolysis. These results may provide insight into diaphragm muscle biology after prolonged cardiothoracic procedures

    Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in the rainbow trout (Oncorhynchus mykiss)

    No full text
    Diclofenac, a nonsteroidal anti-inflammatory drug, is widely detected in surface waters and can potentially cause deleterious effects in fish. Here, we investigated the biological effects of 21-day exposure to waterborne diclofenac at environmentally relevant concentrations (0, 0.5, 1, 5, and 25 µg/L) in rainbow trout. Accumulation of diclofenac in the bile was measured and responses in selected tissues were assessed via changes in the expression of selected genes (cytochrome P450 (cyp) 1a1, cyclooxygenase (cox) 1 and 2, and p53) involved in metabolism of xenobiotics, prostaglandin synthesis, and cell cycle control, respectively, together with histopathological alterations in these tissues. Diclofenac accumulated in the bile by a factor of between 509 ± 27 and 657 ± 25 and various metabolites were putatively identified as hydroxydiclofenac, diclofenac methyl ester, and the potentially reactive metabolite hydroxydiclofenac glucuronide. Expression levels of both cox1 and cox2 in liver, gills, and kidney were significantly reduced by diclofenac exposure from only 1 µg/L. Expression of cyp1a1 was induced in the liver and the gills but inhibited in the kidney of exposed fish. Diclofenac exposure induced tubular necrosis in the kidney and hyperplasia and fusion of the villi in the intestine from 1 µg/L. This study demonstrates that subchronic exposure to environmental concentrations of diclofenac can interfere with the biochemical functions of fish and lead to tissue damage, highlighting further the concern about this pharmaceutical in the aquatic environment

    Trophic transfer and effects of DDT in male hornyhead turbot (Pleuronichthys verticalis) from Palos Verdes Superfund site, CA (USA) and comparisons to field monitoring

    No full text
    High concentrations of DDT and metabolites (ΣDDT) have been detected in sediment and the demersal flatfish hornyhead turbot (Pleuronichtys verticalis) collected from Palos Verdes (PV), California, USA, a site contaminated with over 100 metric tons of DDT throughout 1960s-70s. This study was conducted to assess the transfer of ΣDDT from PV-sediment into polychaetes (Neanthes arenaceodentata) and hornyhead turbot, and to investigate if the responses in turbots from two different laboratory exposures mimic those in turbots caught in PV (PV-turbot). Turbot fed PV-sediment-contaminated polychaete for 7 days had liver concentrations of ΣDDT similar to PV-turbot. After 28 days, ΣDDT also accumulated in livers of turbot gavaged with a ΣDDT mixture. In&nbsp;vitro cell bioassays indicated significant increases of 17β-estradiol equivalents (EEQ) in turbot bile extracts as compared to the control in the 7-day study. These responses corresponded to those measured in PV-fish. Glucocorticoid receptor (GR), anti-androgen receptor (anti-AR), estrogen receptor (ER) or aryl hydrocarbon receptor (AhR) activities were also observed in extracts of PV-sediment, and PV-sediment-exposed worm. Anti-AR, AhR and GR activities were significantly higher in PV-sediment than reference sediment (San Diego, SD). Higher transcripts of hepatic VTG, ERα and ERβ were found in PV-turbot than SD-turbot, but were unaltered in fish exposed to sediment-contaminated worms for the 7-day study. In contrast, liver extracts from the 28-day treatment of ΣDDT showed lower EEQ but similar hepatic VTG and ERβ transcripts relative to those of PV-turbot. These data indicated that trophic transfer of sediment-associated DDT in 7-day exposures corresponded to field measurements of DDT residues and in&nbsp;vitro ER bioactivities, but failed to mimic in&nbsp;vivo biological effects observed in field fish. In contrast, treatment with ΣDDT alone for 28 days mimicked in&nbsp;vivo biological effects of DDTs in PV fish, but did not correspond to liver concentrations or in&nbsp;vitro bioactivities

    Taking Microarrays to the Field: Differential Hepatic Gene Expression of Caged Fathead Minnows from Nebraska Watersheds

    No full text
    This study aimed to evaluate the utility of microarrays as a biomonitoring tool in field studies. A 15,000-oligonucleotide microarray was used to measure the hepatic gene expression of fathead minnows (<i>Pimephales promelas</i>) caged in four Nebraska, USA watersheds - the Niobrara and Dismal Rivers (low-impact agricultural sites) and the Platte and Elkhorn Rivers (high-impact agricultural sites). Gene expression profiles were site specific and fish from the low- and high-impact sites aggregated into distinct groups. Over 1500 genes were differentially regulated between fish from the low- and high-impact sites. Many gene expression differences (1218) were also noted when the Platte and Elkhorn minnows were compared to one another and Platte fish experienced a higher degree of transcript alterations than Elkhorn fish. These findings indicate that there are differences between the low-impact and high-impact sites, as well as between the two high-impact sites. Historical water quality data support these results as only trace levels of agrichemicals have been detected at the low-impact sites, while substantial levels of agrichemicals have been reported at the high-impact sites with agrichemical loads at the Platte generally exceeding those at the Elkhorn. Overall, this study demonstrates that microarrays can be utilized to discriminate sites with different contaminant loads from one another

    Risk-based management framework for microplastics in aquatic ecosystems

    Full text link
    Abstract Microplastic particles (MPs) are ubiquitous across a wide range of aquatic habitats but determining an appropriate level of risk management is hindered by a poor understanding of environmental risk. Here, we introduce a risk management framework for aquatic ecosystems that identifies four critical management thresholds, ranging from low regulatory concern to the highest level of concern where pollution control measures could be introduced to mitigate environmental emissions. The four thresholds were derived using a species sensitivity distribution (SSD) approach and the best available data from the peer-reviewed literature. This included a total of 290 data points extracted from 21 peer-reviewed microplastic toxicity studies meeting a minimal set of pre-defined quality criteria. The meta-analysis resulted in the development of critical thresholds for two effects mechanisms: food dilution with thresholds ranging from ~ 0.5 to 35 particles/L, and tissue translocation with thresholds ranging from ~ 60 to 4100 particles/L. This project was completed within an expert working group, which assigned high confidence to the management framework and associated analytical approach for developing thresholds, and very low to high confidence in the numerical thresholds. Consequently, several research recommendations are presented, which would strengthen confidence in quantifying threshold values for use in risk assessment and management. These recommendations include a need for high quality toxicity tests, and for an improved understanding of the mechanisms of action to better establish links to ecologically relevant adverse effects.http://deepblue.lib.umich.edu/bitstream/2027.42/174090/1/43591_2022_Article_33.pd
    corecore