149 research outputs found

    Entangling the motion of two optically trapped objects via time-modulated driving fields

    Get PDF
    We study entanglement of the motional degrees of freedom of two tethered and optically trapped microdisks inside a single cavity. By properly choosing the position of the trapped objects in the optical cavity and driving proper modes of the cavity it is possible to equip the system with linear and quadratic optomechanical couplings. We show that a parametric coupling between the fundamental vibrational modes of two tethered mircodiscs can be generated via a time modulated input laser. For a proper choice of the modulation frequency, this mechanism can drive the motion of the microdisks into an inseparable state in the long time limit via a two-mode squeezing process. We numerically confirm the performance of our scheme for current technology and briefly discuss an experimental setup which can be employed for detecting this entanglement by employing the quadratic coupling. We also comment on the perspectives for generating such entanglement between the oscillations of optically levitated nanospheres.Comment: 9 pages, 3 figure

    Continuous variable entanglement swapping and its local certification: entangling distant mechanical modes

    Full text link
    We introduce a modification of the standard entanglement swapping protocol where the generation of entanglement between two distant modes is realized and verified using only local optical measurements. We show, indeed, that a simple condition on the purity of the initial state involving also an ancillary mode is sufficient to guarantee the success of the protocol by local measurements {M. Abdi \textit{et al.}, Phys. Rev. Lett. \textbf{109}, 143601 (2012)}]. We apply the proposed protocol to a tripartite optomechanical system where the never interacting mechanical modes become entangled and certified using only local optical measurements.Comment: 12 pages, 3 figure

    Color centers in hexagonal boron nitride monolayers: A group theory and ab-initio analysis

    Full text link
    We theoretically study physical properties of the most promising color center candidates for the recently observed single-photon emissions in hexagonal boron nitride (h-BN) monolayers. Through our group theory analysis combined with density functional theory (DFT) calculations we provide several pieces of evidence that the electronic properties of the color centers match the characters of the experimentally observed emitters. We calculate the symmetry-adapted multi-electron wavefunctions of the defects using group theory methods and analyze the spin-orbit and spin-spin interactions in detail. We also identify the radiative and non-radiative transition channels for each color center. An advanced ab-initio DFT method is then used to compute energy levels of the color centers and their zero-phonon-line (ZPL) emissions. The computed ZPLs, the profile of excitation and emission dipole polarizations, and the competing relaxation processes are discussed and matched with the observed emission lines. By providing evidence for the relation between single-photon emitters and local defects in h-BN, this work provides the first steps towards harnessing quantum dynamics of these color centers.Comment: 11 pages, 5 figure
    corecore