46 research outputs found
Preprocessing 2D data for fast convex hull computations
© 2019 Cadenas, Megson. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This paper presents a method to reduce a set of n 2D points to a smaller set of s 2D points with the property that the convex hull on the smaller set is the same as the convex hull of the original bigger set. The paper shows, experimentally, that such reduction accelerates computations; the time it takes to reduce from n down to s points plus the time of computing the convex hull on the s points is less than the time to compute the convex hull on the original set of n points. The method accepts 2D points expressed as real numbers and thus extends our previous method that required points as integers. The method achieves a percentage of reduction of points of over 90% in a collections of four datasets. This amount of reduction provides speedup factors of at least two for various common convex hull algorithms. Theoretically, the reduction method executes in time within O(n) and thus is suitable for preprocessing 2D data before computing the convex hull by any known algorithm
Running Median Algorithm and Implementation for Integer Streaming Applications
A novel algorithm is proposed to compute the median of a running window of m integers in O(lg lg m) time. For a new window, the new median value is computed as a simple decision based on the previous median and the values removed and inserted into the window. This facilitates implementations based on data structures that support fast ordinal predecessor/successor operations. The results show accelerations of up to factors of six for integer data streaming in typical embedded processors
N-Acetylcysteine inhibits platelet-monocyte conjugation in patients with type 2 diabetes with depleted intraplatelet glutathione: a randomised controlled trial
AIMS/HYPOTHESIS: The aim of this study was to determine whether oral dosing with N-acetylcysteine (NAC) increases intraplatelet levels of the antioxidant, glutathione (GSH), and reduces platelet–monocyte conjugation in blood from patients with type 2 diabetes. METHODS: In this placebo-controlled randomised crossover study, the effect of oral NAC dosing on platelet–monocyte conjugation and intraplatelet GSH was investigated in patients with type 2 diabetes (eligibility criteria: men or post-menopausal women with well-controlled diabetes (HbA(1c) < 10%), not on aspirin or statins). Patients (n = 14; age range 43–79 years, HbA(1c) = 6.9 ± 0.9% [52.3 ± 10.3 mmol/mol]) visited the Highland Clinical Research Facility, Inverness, UK on day 0 and day 7 for each arm of the study. Blood was sampled before and 2 h after oral administration of placebo or NAC (1,200 mg) on day 0 and day 7. Patients received placebo or NAC capsules for once-daily dosing on the intervening days. The order of administration of NAC and placebo was allocated by a central office and all patients and research staff involved in the study were blinded to the allocation until after the study was complete and the data fully analysed. The primary outcome for the study was platelet–monocyte conjugation. RESULTS: Oral NAC reduced platelet–monocyte conjugation (from 53.1 ± 4.5% to 42.5 ± 3.9%) at 2 h after administration and the effect was maintained after 7 days of dosing. Intraplatelet GSH was raised in individuals with depleted GSH and there was a negative correlation between baseline intraplatelet GSH and platelet–monocyte conjugation. There were no adverse events. CONCLUSIONS/INTERPRETATION: The NAC-induced normalisation of intraplatelet GSH, coupled with a reduction in platelet–monocyte conjugation, suggests that NAC might help to reduce atherothrombotic risk in type 2 diabetes. FUNDING: Chief Scientist Office (CZB/4/622), Scottish Funding Council, Highlands & Islands Enterprise and European Regional Development Fund. TRIAL REGISTRATION: isrctn.org ISRCTN89304265 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-012-2685-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users
Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.
BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca