3 research outputs found

    Dual mode diffraction phase microscopy for quantitative functional assessment of biological cells

    No full text
    Abstract A diffraction phase microscopy approach with a combined use of transmission and reflection imaging modes has been developed and applied for non-invasive quantitative assessment of the refractive index of red blood cells (RBCs). We present the theoretical background of signal formation for both imaging modes, accompanied by the results of experimental studies. We demonstrate that simultaneous use of the two modes has great potential for accurate assessment of the refractive index of biological cells, and we perform a reconstruction of spatial distribution of the refractive index of RBC in 3D

    Study of glucose concentration influence on blood optical properties in THz frequency range

    No full text
    Abstract The optical properties of whole human blood with the different glucose level were studied by terahertz time-domain spectroscopy at frequencies ranging from 0.3–0.5 THz. The increasing of refractive index of blood at the glucose level growth was shown for series of experiments. The dispersion of complex refractive index of human nails was obtained. Based on these data, the non-invasive glucose measuring technique was proposed which utilizes the reflection of the THz pulse from nail plate/nail bed interface

    Terahertz-to-infrared converter based on the polyvinylchloride matrix with embedded gold nanoparticles

    No full text
    Abstract Prospects for the development of devices for visualizing terahertz (THz) radiation sources can be associated with the use of the results of old studies (1965–1978) on the absorption of THz radiation by metal nanoparticles. This “renaissance” demonstrates that metallic nanoparticles can be used as nanotransducers of invisible THz radiation to infrared (IR) radiation detectable by a commercial IR camera. The investigated THz-to-IR converters are matrices that are transparent both in the THz radiation range to be visualized and in the operating range of the IR camera; matrices contain embedded metal nanoparticles. The latter, when irradiated with THz rays, convert the energy of THz photons into heat and become nanosources of IR radiation for the IR camera. In metal nanoparticles, the mechanisms of absorption of THz radiation and its conversion into heat are realized through dissipation of the energy of THz photons due to multiple scattering of electrons, as well as because of excitation of two types of phonons (transverse and longitudinal ones). The conversion of THz energy into the energy of transverse phonons occurs directly, while dissipation and excitation of longitudinal phonons occurs indirectly, through the excitation of Fermi electrons. Polyvinylchloride (PVC) was chosen as the matrix material, and gold nanoparticles were chosen as nanoparticles-fillers
    corecore