7 research outputs found

    The instrument control electronics of the ESPRESSO spectrograph @VLT

    Get PDF
    ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations, is a super-stable Optical High Resolution Spectrograph for the Combined Coudé focus of the Very Large Telescope (VLT). It can be operated either as a single telescope instrument or as a multi-telescope facility, by collecting the light of up to four Unit Telescopes (UTs). From the Nasmyth focus of each UT the light is fed, through a set of optical elements (Coudé Train - CT), to the Front End Unit (FEU) which performs several functions, as image and pupil stabilization, inclusion of calibration light and refocusing. The light is then conveyed into the spectrograph fibers. The whole process is handled by several electronically controlled devices. About 40 motorized stages, more than 90 sensors and several calibration lamps are controlled by the Instrument Control Electronics (ICE) and Software (ICS). The technology employed for the control of the ESPRESSO subsystems is PLC-based, with a distributed layout close to the functions to control. This paper illustrates the current status of the ESPRESSO ICE, showing the control architecture, the electrical cabinet’s organization and the experiences gained during the development and assembly phase

    Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys

    Get PDF

    Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys

    Get PDF
    High-density scalp EEG recordings are widely used to study whole-brain neuronal networks in humans non-invasively. Here, we validate EEG mapping of somatosensory evoked potentials (SSEPs) in macaque monkeys (Macaca fascicularis) for the long-term investigation of large-scale neuronal networks and their reorganisation after lesions requiring a craniotomy. SSEPs were acquired from 33 scalp electrodes in five adult anaesthetized animals after electrical median or tibial nerve stimulation. SSEP scalp potential maps were identified by cluster analysis and identified in individual recordings. A distributed, linear inverse solution was used to estimate the intracortical sources of the scalp potentials. SSEPs were characterised by a sequence of components with unique scalp topographies. Source analysis confirmed that median nerve SSEP component maps were in accordance with the somatotopic organisation of the sensorimotor cortex. Most importantly, SSEP recordings were stable both intra- and interindividually. We aim to apply this method to the study of recovery and reorganisation of large-scale neuronal networks following a focal cortical lesion requiring a craniotomy. As a prerequisite, the present study demonstrated that a 300-mm2 unilateral craniotomy over the sensorimotor cortex necessary to induce a cortical lesion, followed by bone flap repositioning, suture and gap plugging with calcium phosphate cement, did not induce major distortions of the SSEPs. In conclusion, SSEPs can be successfully and reproducibly recorded from high-density EEG caps in macaque monkeys before and after a craniotomy, opening new possibilities for the long-term follow-up of the cortical reorganisation of large-scale networks in macaque monkeys after a cortical lesion

    Head model and electrical source imaging: A study of 38 epileptic patients

    Get PDF
    Electrical Source Imaging (ESI) aims at reconstructing the electrical brain activity from scalp EEG. When applied to interictal epileptiform discharges (IED), this technique is of great use for identifying the irritative zone in focal epilepsies. Inaccuracies in the modeling of electro-magnetic field propagation in the head (forward model) may strongly influence ESI and lead to mislocalization of IED generators. However, a systematic study on the influence of the selected head model on the localization precision of IED in a large number of patients with known focus localization has not yet been performed. We here present such a performance evaluation of different head models in a dataset of 38 epileptic patients who have undergone high-density scalp EEG, intracranial EEG and, for the majority, subsequent surgery. We compared ESI accuracy resulting from three head models: a Locally Spherical Model with Anatomical Constraints (LSMAC), a Boundary Element Model (BEM) and a Finite Element Model (FEM). All of them were computed from the individual MRI of the patient and ESI was performed on averaged IED. We found that all head models provided very similar source locations. In patients having a positive post-operative outcome, at least 74% of the source maxima were within the resection. The median distance from the source maximum to the nearest intracranial electrode showing IED was 13.2, 15.6 and 15.6 mm for LSMAC, BEM and FEM, respectively. The study demonstrates that in clinical applications, the use of highly sophisticated and difficult to implement head models is not a crucial factor for an accurate ESI

    Über die (aseptische) Harnstauungsniere

    No full text
    corecore