395 research outputs found

    Friction forces on phase transition fronts

    Get PDF
    In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling.Comment: 34 pages, 7 figures. v2: minor correction

    Stability of cosmological deflagration fronts

    Get PDF
    In a cosmological first-order phase transition, bubbles of the stable phase nucleate and expand in the supercooled metastable phase. In many cases, the growth of bubbles reaches a stationary state, with bubble walls propagating as detonations or deflagrations. However, these hydrodynamical solutions may be unstable under corrugation of the interface. Such instability may drastically alter some of the cosmological consequences of the phase transition. Here, we study the hydrodynamical stability of deflagration fronts. We improve upon previous studies by making a more careful and detailed analysis. In particular, we take into account the fact that the equation of motion for the phase interface depends separately on the temperature and fluid velocity on each side of the wall. Fluid variables on each side of the wall are similar for weakly first-order phase transitions, but differ significantly for stronger phase transitions. As a consequence, we find that, for large enough supercooling, any subsonic wall velocity becomes unstable. Moreover, as the velocity approaches the speed of sound, perturbations become unstable on all wavelengths. For smaller supercooling and small wall velocities, our results agree with those of previous works. Essentially, perturbations on large wavelengths are unstable, unless the wall velocity is higher than a critical value. We also find a previously unobserved range of marginally unstable wavelengths. We analyze the dynamical relevance of the instabilities, and we estimate the characteristic time and length scales associated to their growth. We discuss the implications for the electroweak phase transition and its cosmological consequences.Comment: 45 pages, 13 figures. v2: Minor corrections, references added. v3: Typos corrected, minor modifications and references added (version accepted in PRD

    Hydrodynamics of phase transition fronts and the speed of sound in the plasma

    Get PDF
    The growth of bubbles in cosmological first-order phase transitions involves nontrivial hydrodynamics. For that reason, the study of the propagation of phase transition fronts often requires several approximations. A frequently used approximation consists in describing the two phases as being composed only of radiation and vacuum energy (the so-called bag equation of state). We show that, in realistic models, the speed of sound in the low-temperature phase is generally smaller than that of radiation, and we study the hydrodynamics in such a situation. We find in particular that a new kind of hydrodynamical solution may be possible, which does not arise in the bag model. We obtain analytic results for the efficiency of the transfer of latent heat to bulk motions of the plasma, as a function of the speed of sound in each phase.Comment: 44 pages, 19 figures. v2: some comments and references added. v3: Some discussions and a figure added. Results unchanged. Matches published versio

    Stability of cosmological detonation fronts

    Get PDF
    The steady state propagation of a phase transition front is classified, according to hydrodynamics, as a deflagration or a detonation, depending on its velocity with respect to the fluid. These propagation modes are further divided into three types, namely, weak, Jouguet, and strong solutions, according to their disturbance of the fluid. However, some of these hydrodynamic modes will not be realized in a phase transition. One particular cause is the presence of instabilities. In this work we study the linear stability of weak detonations, which are generally believed to be stable. After discussing in detail the weak detonation solution, we consider small perturbations of the interface and the fluid configuration. When the balance between the driving and friction forces is taken into account, it turns out that there are actually two different kinds of weak detonations, which behave very differently as functions of the parameters. We show that the branch of stronger weak detonations are unstable, except very close to the Jouguet point, where our approach breaks down.Comment: 34 pages, 11 figures. v2: typos corrected and minor change

    Analytic approach to the motion of cosmological phase transition fronts

    Full text link
    We consider the motion of planar phase-transition fronts in first-order phase transitions of the Universe. We find the steady state wall velocity as a function of a friction coefficient and thermodynamical parameters, taking into account the different hydrodynamic modes of propagation. We obtain analytical approximations for the velocity by using the thin wall approximation and the bag equation of state. We compare our results to those of numerical calculations and discuss the range of validity of the approximations. We analyze the structure of the stationary solutions. Multiple solutions may exist for a given set of parameters, even after discarding non-physical ones. We discuss which of these will be realized in the phase transition as the stationary wall velocity. Finally, we discuss on the saturation of the friction at ultra-relativistic velocities and the existence of runaway solutions.Comment: 25 pages, 9 figures. The title has changed. A discussion on the saturation of the friction and the possibility of runaway walls has been adde

    Strings With Axionic Content and Baryogenesis

    Full text link
    We describe different electroweak strings with axionic content, including non-topological configurations calculated numerically, and show their possible influence on baryogenesis indicating that they may constitute a mechanism competitive to that of bubble nucleation with two Higgs-doublets.Comment: 12 page

    Scalar field confinement as a model for accreting systems

    Full text link
    We investigate the possibility to localize scalar field configurations as a model for black hole accretion. We analyze and resolve difficulties encountered when localizing scalar fields in General Relativity. We illustrate this ability with a simple spherically symmetric model which can be used to study features of accreting shells around a black hole. This is accomplished by prescribing a scalar field with a coordinate dependent potential. Numerical solutions to the Einstein-Klein-Gordon equations are shown, where a scalar filed is indeed confined within a region surrounding a black hole. The resulting spacetime can be described in terms of simple harmonic time dependence.Comment: 18 pages; accepted for publication in Classical and Quantum Gravit

    Numerical evolution of squeezed and non-Gaussian states in loop quantum cosmology

    Full text link
    In recent years, numerical simulations with Gaussian initial states have demonstrated the existence of a quantum bounce in loop quantum cosmology in various models. A key issue pertaining to the robustness of the bounce and the associated physics is to understand the quantum evolution for more general initial states which may depart significantly from Gaussianity and may have no well defined peakedness properties. The analysis of such states, including squeezed and highly non-Gaussian states, has been computationally challenging until now. In this manuscript, we overcome these challenges by using the Chimera scheme for the spatially flat, homogeneous and isotropic model sourced with a massless scalar field. We demonstrate that the quantum bounce in this model occurs even for states which are highly squeezed or are non-Gaussian with multiple peaks and with little resemblance to semi-classical states. The existence of the bounce is found to be robust, being independent of the properties of the states. The evolution of squeezed and non-Gaussian states turns out to be qualitatively similar to that of Gaussian states, and satisfies strong constraints on the growth of the relative fluctuations across the bounce. We also compare the results from the effective dynamics and find that, although it captures the qualitative aspects of the evolution for squeezed and highly non-Gaussian states, it always underestimates the bounce volume. We show that various properties of the evolution, such as the energy density at the bounce, are in excellent agreement with the predictions from an exactly solvable loop quantum cosmological model for arbitrary states.Comment: 26 pages, 16 figures. v2: Discussion of the main results expande
    • …
    corecore