117 research outputs found

    Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine

    Get PDF
    The Prairie Pothole Region of North America is characterized by millions of depressional wetlands, which provide critical habitats for globally significant populations of migratory waterfowl and other wildlife species. Due to their relatively small size and shallow depth, these wetlands are highly sensitive to climate variability and anthropogenic changes, exhibiting inter- and intra-annual inundation dynamics. Moderate-resolution satellite imagery (e.g., Landsat, Sentinel) alone cannot be used to effectively delineate these small depressional wetlands. By integrating fine spatial resolution Light Detection and Ranging (LiDAR) data and multi-temporal (2009–2017) aerial images, we developed a fully automated approach to delineate wetland inundation extent at watershed scales using Google Earth Engine. Machine learning algorithms were used to classify aerial imagery with additional spectral indices to extract potential wetland inundation areas, which were further refined using LiDAR-derived landform depressions. The wetland delineation results were then compared to the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) geospatial dataset and existing global-scale surface water products to evaluate the performance of the proposed method. We tested the workflow on 26 watersheds with a total area of 16,576 km2 in the Prairie Pothole Region. The results showed that the proposed method can not only delineate current wetland inundation status but also demonstrate wetland hydrological dynamics, such as wetland coalescence through fill-spill hydrological processes. Our automated algorithm provides a practical, reproducible, and scalable framework, which can be easily adapted to delineate wetland inundation dynamics at broad geographic scales

    Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields

    Get PDF
    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400–2450 nm, ∼10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n=315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R2>0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3×3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands

    Significant Surface-Water Connectivity of Geographically Isolated Wetlands

    Get PDF
    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be geographically isolated (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be geographically isolated shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying geographically isolated wetlands based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of geographically isolated wetlands . Wetlands surrounded by uplands vary in function and surface water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the geographically isolated grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface water connectivity of wetlands fully embedded in upland landscapes

    Geographically Isolated Wetlands: Rethinking a Misnomer

    Get PDF
    Abstract We explore the category Bgeographically isolated wetlands^(GIWs; i.e., wetlands completely surrounded by uplands at the local scale) as used in the wetland sciences. As currently used, the GIW category (1) hampers scientific efforts by obscuring important hydrological and ecological differences among multiple wetland functional types, (2) aggregates wetlands in a manner not reflective of regulatory and management information needs, (3) implies wetlands so described are in some way Bisolated,^an often incorrect implication, (4) is inconsistent with more broadly used and accepted concepts of Bgeographic isolation,^and (5) has injected unnecessary confusion into scientific investigations and discussions. Instead, we suggest other wetland classification systems offer more informative alternatives. For example, hydrogeomorphic (HGM) classes based on wellestablished scientific definitions account for wetland functional diversity thereby facilitating explorations into questions of connectivity without an a priori designation of Bisolation.^Additionally, an HGM-type approach could be used in combination with terms reflective of current regulatory or policymaking needs. For those rare cases in which the condition of being surrounded by uplands is the relevant distinguishing characteristic, use of terminology that does not unnecessarily imply isolation (e.g., Bupland embedded wetlands^) would help alleviate much confusion caused by the Bgeographically isolated wetlands^misnomer

    Crop Updates 2009 - Farming Systems

    Get PDF
    This session covers nineteen papers from different authors: Decision support technology 1. The use of high resolution imagery in broad acre cropping, Derk Bakker and Grey Poulish, Department of Agriculture and Food 2. Spraywise decisions – online spray applicatiors planning tool, Steve Lacy, Nufarm Australia Ltd 3. Testing for redlegged earthmite resistance in Western Australia, Svetlana Micic, Peter Mangano, Tony Dore and Alan Lord, Department of Agriculture and Food 4. Screening cereal, canola and pasture cultivars for Root Lesion Nematode (Pratylenchus neglectus), Vivien Vanstone, Helen Hunter and Sean Kelly,Department of Agriculture and Food Farming Systems Research 5. Lessons from five years of cropping systems research, WK Anderson, Department of Agriculture and Food 6. Facey Group rotations for profit: Five years on and where to next? Gary Lang and David McCarthy, Facey Group, Wickepin, WA Mixed Farming 7. Saline groundwater use by Lucerne and its biomass production in relation to groundwater salinity, Ruhi Ferdowsian, Ian Roseand Andrew Van Burgel, Department of Agriculture and Food 8. Autumn cleaning yellow serradella pastures with broad spectrum herbicides – a novel weed control strategy that exploits delayed germination, Dr David Ferris, Department of Agriculture and Food 9. Decimating weed seed banks within non-crop phases for the benefit of subsequent crops, Dr David Ferris, Department of Agriculture and Food 10. Making seasonal variability easier to deal with in a mixed farming enterprise! Rob Grima,Department of Agriculture and Food 11. How widely have new annual legume pastures been adopted in the low to medium rainfall zones of Western Australia? Natalie Hogg, Department of Agriculture and Food, John Davis, Institute for Sustainability and Technology Policy, Murdoch University 12. Economic evaluation of dual purpose cereal in the Central wheatbelt of Western Australia, Jarrad Martin, Pippa Michael and Robert Belford, School of Agriculture and Environment, CurtinUniversity of Technology, Muresk Campus 13. A system for improving the fit of annual pasture legumes under Western Australian farming systems, Kawsar P Salam1,2, Roy Murray-Prior1, David Bowran2and Moin U. Salam2, 1Curtin University of Technology; 2Department of Agriculture and Food 14. Perception versus reality: why we should measure our pasture, Tim Scanlon, Department of Agriculture and Food, Len Wade, Charles Sturt University, Megan Ryan, University of Western Australia Modelling 15. Potential impact of climate changes on the profitability of cropping systems in the medium and high rainfall areas of the northern wheatbelt, Megan Abrahams, Chad Reynolds, Caroline Peek, Dennis van Gool, Kari-Lee Falconer and Daniel Gardiner, Department of Agriculture and Food 16. Prediction of wheat grain yield using Yield Prophet®, Geoff Anderson and Siva Sivapalan, Department of Agriculture and Food 17. Using Yield Prophet® to determine the likely impacts of climate change on wheat production, Tim McClelland1, James Hunt1, Zvi Hochman2, Bill Long3, Dean Holzworth4, Anthony Whitbread5, Stephen van Rees1and Peter DeVoil6 1 Birchip Cropping Group, Birchip, Vic, 2Agricultural Production Systems Research Unit (APSRU), CSIRO Sustainable Ecosystems, Climate Adaptation Flagship, Qld, 3 AgConsulting, SA 4 Agricultural Production Systems Research Unit (APSRU), CSIRO Sustainable Ecosystems, Toowoomba Qld, 5 CSIRO Sustainable Ecosystems, SA, 6 Agricultural Production Systems Research Unit (APSRU), Department of Agriculture and Fisheries, Queensland 18. Simple methods to predict yield potential: Improvements to the French and Schultz formula to account for soil type and within-season rainfall, Yvette Oliver, Michael Robertson and Peter Stone, CSIRO Sustainable Ecosystems 19. Ability of various yield forecasting models to estimate soil water at the start of the growing season, Siva Sivapalan, Kari-Lee Falconer and Geoff Anderson, Department of Agriculture and Foo

    Myocardial dysfunction in the periinfarct and remote regions following anterior infarction in rats quantified by 2D radial strain echocardiography: An observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heart failure from adverse ventricular remodeling follows myocardial infarction, but the contribution of periinfarct and remote myocardium to the development of cardiomyopathy remains poorly defined. 2D strain echocardiography (2DSE) is a novel and sensitive tool to measure regional myocardial mechanics. The aim is to quantify radial strain in infarcted (I), periinfarct (PI) and remote (R) myocardial regions acutely and chronically following anterior infarction in rats.</p> <p>Methods</p> <p>The left anterior coronary artery of male Sprague-Dawley rats (270–370 g) were occluded for 20–30 minutes and 2DSE was performed in the acute setting (n = 10; baseline and 60 minutes post-reperfusion) and in the chronic setting (n = 14; baseline, 1, 3 and 6 weeks). Using software, radial strain was measured in the mid-ventricle in short axis view. The ventricle was divided into 3 regions: I (anteroseptum, anterior and anterolateral), PI – (inferoseptum and inferolateral) and R – (inferior). Infarct size was measured using triphenyl tetrazolium chloride in the acute group.</p> <p>Results</p> <p>Following infarct, adverse remodeling occurred with progressive increase in left ventricular size, mass and reduced fractional shortening within 6 weeks. Radial strain decreased not only in the infarct but also in the periinfarct and remote regions acutely and chronically (I, PI, R, change vs. baseline, 60 minutes -32.7 ± 8.7, -17.4 ± 9.4, -13.5 ± 11.6%; 6 weeks -24.4 ± 8.2, -17.7 ± 8.3, -15.2 ± 8.4% respectively, all p < 0.05). Reduced radial strain in periinfarct and remote regions occurred despite minimal or absent necrosis (area of necrosis I, PI, R: 48.8 ± 23, 5.1 ± 6.6, 0 ± 0%, p < 0.001 vs. I).</p> <p>Conclusion</p> <p>Following left anterior coronary occlusion, radial strain decreased at 60 minutes and up to 6 weeks in the periinfarct and remote regions, similar to the reduction in the infarct region. This demonstrates early and chronic myopathic process in periinfarct and remote regions following myocardial infarction that may be an under recognized but important contributor to adverse left ventricular remodeling and progression to ischemic cardiomyopathy.</p

    Genetic Control of a Central Pattern Generator: Rhythmic Oromotor Movement in Mice Is Controlled by a Major Locus near Atp1a2

    Get PDF
    Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h2≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F1 hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10). Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons. Both this subunit and the entire Na+/K+-ATPase molecule have been implicated in rhythmogenesis for respiration and locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central pattern generator tempo

    Residual cancer burden after neoadjuvant chemotherapy and long-term survival outcomes in breast cancer: a multicentre pooled analysis of 5161 patients

    Get PDF

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
    • …
    corecore