35 research outputs found

    Immune cell kinetics in the ovine abomasal mucosa following hyperimmunization and challenge with Haemonchus contortus

    Get PDF
    Sheep were sensitized by repeated infection with Haemonchus contortus L3, followed by a 12 week rest period, and an abomasal cannula was surgically implanted in all sheep. Seven of the sensitized sheep were subsequently challenged with 50 000 H. contortus L3 while 4 control sheep were challenged with saline. Biopsy samples were taken using a fibreoptic endoscope on days 0, 1, 2, 3, 5, 7 and 28 after challenge and leukocyte subpopulations quantified by (immuno)histology. Differential blood cell counts were performed on the same days. At the end of the trial, sheep showed significantly reduced worm burdens compared to unsensitized control sheep, confirming their resistance status. Both blood and tissue eosinophils, as well as tissue γδ TCR+ cells were rapidly elevated by day 1 post L3 challenge (pc), peaking at day 3 pc. There was a slight increase in tissue CD4 T cells at day 2 pc, peaking at day 3 pc while no significant changes in CD8 T cells were observed. B cells (CD45R+) increased later into challenged tissues with a peak at 5 days pc. All tissue lymphocyte subpopulations as well as tissue and blood eosinophils were reduced by day 7 pc before increasing again at day 28 pc, suggesting separate responses to larval and adult antigens. In contrast, globule leukocytes and mucosal mast cells only showed one peak at day 5 pc and 28 pc, respectively. Unexpectedly, globule leukocytes correlated significantly with tissue eosinophils but not mucosal mast cells. The results are consistent with an early eosinophil-mediated killing of L3, possibly recruited by IL-5 produced by γδ T cells. In contrast to post-mortem studies, abomasal cannulation allowed sequential analysis of both early and late time points in the same animal, providing a more complete picture of cellular interactions at both peripheral and local sites, and their correlation with the different stages of parasite development

    Current Status of Veterinary Vaccines

    No full text
    The major goals of veterinary vaccines are to improve the health and welfare of companion animals, increase production of livestock in a cost-effective manner, and prevent animal-to-human transmission from both domestic animals and wildlife. These diverse aims have led to different approaches to the development of veterinary vaccines from crude but effective whole-pathogen preparations to molecularly defined subunit vaccines, genetically engineered organisms or chimeras, vectored antigen formulations, and naked DNA injections. The final successful outcome of vaccine research and development is the generation of a product that will be available in the marketplace or that will be used in the field to achieve desired outcomes. As detailed in this review, successful veterinary vaccines have been produced against viral, bacterial, protozoal, and multicellular pathogens, which in many ways have led the field in the application and adaptation of novel technologies. These veterinary vaccines have had, and continue to have, a major impact not only on animal health and production but also on human health through increasing safe food supplies and preventing animal-to-human transmission of infectious diseases. The continued interaction between animals and human researchers and health professionals will be of major importance for adapting new technologies, providing animal models of disease, and confronting new and emerging infectious diseases

    Use of Animal Models to Investigate Major Allergens Associated with Food Allergy

    Get PDF
    Food allergy is an emerging epidemic that affects all age groups, with the highest prevalence rates being reported amongst Western countries such as the United States (US), United Kingdom (UK), and Australia. The development of animal models to test various food allergies has been beneficial in allowing more rapid and extensive investigations into the mechanisms involved in the allergic pathway, such as predicting possible triggers as well as the testing of novel treatments for food allergy. Traditionally, small animal models have been used to characterise immunological pathways, providing the foundation for the development of numerous allergy models. Larger animals also merit consideration as models for food allergy as they are thought to more closely reflect the human allergic state due to their physiology and outbred nature. This paper will discuss the use of animal models for the investigation of the major food allergens; cow's milk, hen's egg, and peanut/other tree nuts, highlight the distinguishing features of each of these models, and provide an overview of how the results from these trials have improved our understanding of these specific allergens and food allergy in general

    Peritoneal Lavage Cells of Indonesian Thin-Tail Sheep Mediate Antibody-Dependent Superoxide Radical Cytotoxicity In Vitro against Newly Excysted Juvenile Fasciola gigantica but Not Juvenile Fasciola hepatica

    No full text
    Indonesian thin-tail (ITT) sheep resist infection by Fasciola gigantica by an immunological mechanism within 2 to 4 weeks of infection yet are susceptible to F. hepatica infection. Studies of ITT sheep show that little liver damage occurs following F. gigantica infection, suggesting that the invading parasites are killed within the peritoneum or shortly after reaching the liver. We investigated whether cells isolated from the peritoneums of ITT sheep could kill newly excysted juvenile F. gigantica in vitro and act as a potential mechanism of resistance against F. gigantica infection. Peritoneal cells from F. gigantica-infected sheep, rich in macrophages and eosinophils, mediated antibody-dependent cytotoxicity against juvenile F. gigantica in vitro. Cytotoxicity was dependent on contact between the parasite and effector cells. Isolated mammary gland eosinophils of F. gigantica-infected sheep, or resident peritoneal monocytes/macrophages from uninfected sheep, also killed the juvenile parasites in vitro. By using inhibitors, we show that the molecular mechanism of killing in these assays was dependent on the production of superoxide radicals by macrophages and eosinophils. In contrast, this cytotoxic mechanism was ineffective against juvenile F. hepatica parasites in vitro. Analysis of superoxide dismutase activity and mRNA levels showed that activity and gene expression were higher in F. hepatica than in F. gigantica, suggesting a possible role for this enzyme in the resistance of F. hepatica to superoxide-mediated killing. We suggest that ovine macrophages and eosinophils, acting in concert with a specific antibody, may be important effector cells involved in the resistance of ITT sheep to F. gigantica
    corecore