33 research outputs found
Serum metabolite markers of early Mycoplasma hyopneumoniae infection in pigs
International audienceAbstractMycoplasma hyopneumoniae, the primary pathogenic bacterium causing enzootic pneumonia, significantly affects worldwide swine production. The infection is usually persistent and bacterial identification and isolation of M. hyopneumoniae in clinical samples are challenging due to the fastidious requirements for its growth. Hence, new practical surveillance tools that improve or complement existing diagnostics on M. hyopneumoniae are desirable, especially in early infection. The objective of this study was to identify potential metabolite markers of early M. hyopneumoniae infection in pigs through metabolomics analysis. Samples obtained from pigs in a previous M. hyopneumoniae experimental infection were used in this study. Briefly, two pigs served as mock inoculated controls and ten pigs were intra-tracheally inoculated with M. hyopneumoniae. Sera, laryngeal swabs (LS), and tracheo-bronchial lavage fluid (TBLF) were collected from all pigs at 0, 2, 5, 9, 14, 21 and 28 days post-inoculation (dpi). Bronchial swabs (BS) were collected post-mortem at 28 dpi. Mycoplasma hyopneumoniae infection was confirmed by PCR in LS, TBLF and BS. Serum metabolites were profiled using high-resolution liquid chromatography–mass spectrometry (LC–MS) analysis. Metabolite markers were identified by structural analysis following multivariate analysis of LC–MS data. The results showed that M. hyopneumoniae infection time-dependently altered the serum levels of selective amino acids and fatty acids. α-Aminobutyric acid and long-chain fatty acids were markedly increased at 14 and 21 dpi in inoculated pigs (p < 0.05). These results indicated that M. hyopneumoniae infection caused systemic changes in host metabolism, warranting further studies to determine underlying biochemical and physiological mechanisms responsible for the observed changes
Influence of pig gut microbiota on Mycoplasma hyopneumoniae susceptibility
International audienceAbstractThis study investigated the influence of gut microbiome composition in modulating susceptibility to Mycoplasma hyopneumoniae in pigs. Thirty-two conventional M. hyopneumoniae free piglets were randomly selected from six different litters at 3 weeks of age and were experimentally inoculated with M. hyopneumoniae at 8 weeks of age. Lung lesion scores (LS) were recorded 4 weeks post-inoculation (12 weeks of age) from piglet lungs at necropsy. Fecal bacterial community composition of piglets at 3, 8 and 12 weeks of age were targeted by amplifying the V3–V4 region of the 16S rRNA gene. The LS ranged from 0.3 to 43% with an evident clustering of the scores observed in piglets within litters. There were significant differences in species richness and alpha diversity in fecal microbiomes among piglets within litters at different time points (p < 0.05). The dissimilarity matrices indicated that at 3 weeks of age, the fecal microbiota of piglets was more dissimilar compared to those from 8 to 12 weeks of age. Specific groups of bacteria in the gut that might predict the decreased severity of M. hyopneumoniae associated lesions were identified. The microbial shift at 3 weeks of age was observed to be driven by the increase in abundance of the indicator family, Ruminococcaceae in piglets with low LS (p < 0.05). The taxa, Ruminococcus_2 having the highest richness scores, correlated significantly between litters showing stronger associations with the lowest LS (r = −0.49, p = 0.005). These findings suggest that early life gut microbiota can be a potential determinant for M. hyopneumoniae susceptibility in pigs
Transmission of SARS-CoV-2 from humans to animals and potential host adaptation
SARS-CoV-2, the causative agent of the COVID-19 pandemic, can infect a wide range of mammals. Since its spread in humans, secondary host jumps of SARS-CoV-2 from humans to multiple domestic and wild populations of mammals have been documented. Understanding the extent of adaptation to these animal hosts is critical for assessing the threat that the spillback of animal-adapted SARS-CoV-2 into humans poses. We compare the genomic landscapes of SARS-CoV-2 isolated from animal species to that in humans, profiling the mutational biases indicative of potentially different selective pressures in animals. We focus on viral genomes isolated from mink (Neovison vison) and white-tailed deer (Odocoileus virginianus) for which multiple independent outbreaks driven by onward animal-to-animal transmission have been reported. We identify five candidate mutations for animal-specific adaptation in mink (NSP9_G37E, Spike_F486L, Spike_N501T, Spike_Y453F, ORF3a_L219V), and one in deer (NSP3a_L1035F), though they appear to confer a minimal advantage for human-to-human transmission. No considerable changes to the mutation rate or evolutionary trajectory of SARS-CoV-2 has resulted from circulation in mink and deer thus far. Our findings suggest that minimal adaptation was required for onward transmission in mink and deer following human-to-animal spillover, highlighting the 'generalist' nature of SARS-CoV-2 as a mammalian pathogen
Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer.
Many animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and could act as reservoirs; however, transmission in free-living animals has not been documented. White-tailed deer, the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 is circulating in deer, 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through January of 2021 were assayed for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 (33.2%) deer samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, following the November 2020 peak of human cases in Iowa, and coinciding with the onset of winter and the peak deer hunting season, SARS-CoV-2 RNA was detected in 80 of 97 (82.5%) RPLN samples collected over a 7-wk period. Whole genome sequencing of all 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%) and B.1.311 (n = 19; 20%) accounting for ∼75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple human-to-deer transmission events followed by subsequent deer-to-deer spread. These discoveries have important implications for the long-term persistence of the SARS-CoV-2 pandemic. Our findings highlight an urgent need for a robust and proactive "One Health" approach to obtain enhanced understanding of the ecology, molecular evolution, and dissemination of SARS-CoV-2
Lyophilized, thermostable Spike or RBD immunogenic liposomes induce protective immunity against SARS-CoV-2 in mice
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has caused a worldwide viral pandemic leading to global efforts to
produce and distribute effective vaccines that prevent coronavirus
virus disease 2019 (COVID-19) (1). The Spike protein and, more
specifically, its receptor-binding domain (RBD) on the virus surface
are responsible for binding to human angiotensin-converting
enzyme 2 (hACE2) on the host cell. Hence, because of their central
role in viral entry, the Spike and the RBD are established immunogens
in SARS-CoV-2 vaccines (2, 3). mRNA-based and viral-vectored
vaccines encoding the Spike protein have gained regulatory approvals
and are being massively deployed presently. Despite their excellent
protective efficacy against SARS-CoV-2, mRNA vaccines have
well-known limited thermostability, and thus, global distribution is
complicated by the requirement of ultracold freezing storage
temperatures (4). As COVID-19 vaccines are needed worldwide to
immunize sufficient populations to induce global herd immunity,
including in low- and middle-income countries, there is more
demand for vaccine doses than at any other time in history (5). A
potent vaccine that is effective with a lower amount of antigen per
dose would increase manufacturing and distribution capacity,
facilitating the supply of global needs during the pandemic.This research was supported by the NIH (R43AI165089), the European Union’s Horizon 2020 research and innovation program under a Marie Skłodowska-Curie grant (E.R.), the CIFAR Azrieli Global Scholar program (J.P.-J.), the Ontario Early Researcher Awards program (J.P.-J.), and the Canada Research Chairs program (J.P.-J.). Cryo-EM images were collected at the Facility for Electron Microscopy Research (FEMR) at McGill University. FEMR is supported by the Canadian Foundation for Innovation, the Quebec government, and McGill University.Peer reviewe
Controlling Enterohemorrhagic E. coli O157: H7 using Selenium and Rutin
Enterohemorrhagic E.coli O157: H7 (EHEC) has emerged as one of the leading causes of food borne illness and pediatric diarrheal disease in the United States. The EHEC associated life-threatening hemolytic uremic syndrome in human patients is linked to the expression of several virulence factors of the pathogen, especially verotoxins. Verotoxins (VT) or shiga like toxins (Stx) are the major virulence factors elaborated by EHEC. Even after 30 years of research on EHEC epidemiology and pathogenesis, little advancement has been made in disease prevention and treatment against the bacterium. One of the main limitations in treating EHEC infection is the contraindicated usage of antibiotics since they have been reported to exacerbate verotoxin-mediated HUS and renal failure. Therefore, there is a crucial need for the development of alternate interventions for preventing and treating EHEC infections in humans. EHEC being a foodborne pathogen, controlling its persistence in meat processing facilities and inactivating the pathogen in high-risk foods such as undercooked ground beef products could potentially reduce food-borne disease outbreaks in humans. Moreover, identifying drugs that attenuate EHEC virulence, especially verotoxins would reduce the severity of infection and improve disease outcome in humans. This dissertation investigated the potential of a phytochemical, rutin (RT), and an essential mineral, selenium (Se), for targeting EHEC from both these aspects, thereby reducing risks to humans. Specifically, the efficacy of Se in reducing EHEC biofilms on food contact surfaces, and the efficacy of RT for decreasing EHEC in undercooked ground beef were investigated. Selenium was found to be effective in inhibiting and inactivating EHEC on abiotic surfaces. In addition, coating of stainless steel surface with Se nanoparticles exerted significant antibiofilm effect against EHEC (P \u3c 0.05). On the other hand, RT significantly increased heat inactivation of EHEC in undercooked ground beef patties without adversely affecting meat color and shelf-life. In addition, mechanistic investigations on the anti-virulence property of these natural antimicrobials revealed that Se and RT significantly decreased both intracellular and extracellular verotoxin synthesis (P \u3c 0.05). In addition, Se decreased EHEC toxin receptor expression in host cells, whereas RT competed for the receptor binding sites on the toxin. Moreover, RT decreased EHEC motility and adhesion to cultured intestinal epithelial cells (P\u3c 0.05). Subsequently, the protective effect of RT and Se against EHEC was validated in vivo using Caenorhabditis elegans model. Rutin significantly increased the survival of EHEC-infected C. elegans compared to control worms, where the survivability was increased by ~ 65% (P \u3c 0.05). However, Se was lethal to C. elegans, and at very low sub-lethal dose failed to protect the worms when challenged with EHEC
Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics
Multi-drug resistant (MDR) Acinetobacter baumannii is a major nosocomial pathogen causing a wide range of clinical conditions with significant mortality rates. A. baumannii strains are equipped with a multitude of antibiotic resistance mechanisms, rendering them resistant to most of the currently available antibiotics. Thus, there is a critical need to explore novel strategies for controlling antibiotic resistance in A. baumannii. This study investigated the efficacy of two food-grade, plant-derived antimicrobials (PDAs), namely trans-cinnamaldehyde (TC) and eugenol (EG) in decreasing A. baumannii’s resistance to seven β-lactam antibiotics, including ampicillin, methicillin, meropenem, penicillin, aztreonam, amoxicillin, and piperacillin. Two MDR A. baumannii isolates (ATCC 17978 and AB 251847) were separately cultured in tryptic soy broth (∼6 log CFU/ml) containing the minimum inhibitory concentration (MIC) of TC or EG with or without the MIC of each antibiotic at 37°C for 18 h. A. baumannii strains not exposed to the PDAs or antibiotics served as controls. Following incubation, A. baumannii counts were determined by broth dilution assay. In addition, the effect of PDAs on the permeability of outer membrane and efflux pumps in A. baumannii was measured. Further, the effect of TC and EG on the expression of A. baumannii genes encoding resistance to β-lactam antibiotics (blaP), efflux pumps (adeABC), and multi-drug resistant protein (mdrp) was studied using real-time quantitative PCR (RT-qPCR). The experiment was replicated three times with duplicate samples of each treatment and control. The results from broth dilution assay indicated that both TC and EG in combination with antibiotics increased the sensitivity of A. baumannii to all the tested antibiotics (P < 0.05). The two PDAs inhibited the function of A. baumannii efflux pump, (AdeABC), but did not increase the permeability of its outer membrane. Moreover, RT-qPCR data revealed that TC and EG down-regulated the expression of majority of the genes associated with β-lactam antibiotic resistance, especially blaP and adeABC (P < 0.05). The results suggest that TC and EG could potentially be used along with β-lactam antibiotics for controlling MDR A. baumannii infections; however, their clinical significance needs to be determined using in vivo studies
Inhibiting Microbial Toxins Using Plant-Derived Compounds and Plant Extracts
Many pathogenic bacteria and fungi produce potentially lethal toxins that cause cytotoxicity or impaired cellular function either at the site of colonization or other locations in the body through receptor-mediated interactions. Various factors, including biotic and abiotic environments, competing microbes, and chemical cues affect toxin expression in these pathogens. Recent work suggests that several natural compounds can modulate toxin production in pathogenic microbes. However, studies explaining the mechanistic basis for their effect are scanty. This review discusses the potential of various plant-derived compounds for reducing toxin production in foodborne and other microbes. In addition, studies highlighting their anti-toxigenic mechanism(s) are discussed
Sialic Acid Receptors: The Key to Solving the Enigma of Zoonotic Virus Spillover
Emerging viral diseases are a major threat to global health, and nearly two-thirds of emerging human infectious diseases are zoonotic. Most of the human epidemics and pandemics were caused by the spillover of viruses from wild mammals. Viruses that infect humans and a wide range of animals have historically caused devastating epidemics and pandemics. An in-depth understanding of the mechanisms of viral emergence and zoonotic spillover is still lacking. Receptors are major determinants of host susceptibility to viruses. Animal species sharing host cell receptors that support the binding of multiple viruses can play a key role in virus spillover and the emergence of novel viruses and their variants. Sialic acids (SAs), which are linked to glycoproteins and ganglioside serve as receptors for several human and animal viruses. In particular, influenza and coronaviruses, which represent two of the most important zoonotic threats, use SAs as cellular entry receptors. This is a comprehensive review of our current knowledge of SA receptor distribution among animal species and the range of viruses that use SAs as receptors. SA receptor tropism and the predicted natural susceptibility to viruses can inform targeted surveillance of domestic and wild animals to prevent the future emergence of zoonotic viruses
Data_Sheet_1_Trans-Cinnamaldehyde and Eugenol Increase Acinetobacter baumannii Sensitivity to Beta-Lactam Antibiotics.DOCX
<p>Multi-drug resistant (MDR) Acinetobacter baumannii is a major nosocomial pathogen causing a wide range of clinical conditions with significant mortality rates. A. baumannii strains are equipped with a multitude of antibiotic resistance mechanisms, rendering them resistant to most of the currently available antibiotics. Thus, there is a critical need to explore novel strategies for controlling antibiotic resistance in A. baumannii. This study investigated the efficacy of two food-grade, plant-derived antimicrobials (PDAs), namely trans-cinnamaldehyde (TC) and eugenol (EG) in decreasing A. baumannii’s resistance to seven β-lactam antibiotics, including ampicillin, methicillin, meropenem, penicillin, aztreonam, amoxicillin, and piperacillin. Two MDR A. baumannii isolates (ATCC 17978 and AB 251847) were separately cultured in tryptic soy broth (∼6 log CFU/ml) containing the minimum inhibitory concentration (MIC) of TC or EG with or without the MIC of each antibiotic at 37°C for 18 h. A. baumannii strains not exposed to the PDAs or antibiotics served as controls. Following incubation, A. baumannii counts were determined by broth dilution assay. In addition, the effect of PDAs on the permeability of outer membrane and efflux pumps in A. baumannii was measured. Further, the effect of TC and EG on the expression of A. baumannii genes encoding resistance to β-lactam antibiotics (blaP), efflux pumps (adeABC), and multi-drug resistant protein (mdrp) was studied using real-time quantitative PCR (RT-qPCR). The experiment was replicated three times with duplicate samples of each treatment and control. The results from broth dilution assay indicated that both TC and EG in combination with antibiotics increased the sensitivity of A. baumannii to all the tested antibiotics (P < 0.05). The two PDAs inhibited the function of A. baumannii efflux pump, (AdeABC), but did not increase the permeability of its outer membrane. Moreover, RT-qPCR data revealed that TC and EG down-regulated the expression of majority of the genes associated with β-lactam antibiotic resistance, especially blaP and adeABC (P < 0.05). The results suggest that TC and EG could potentially be used along with β-lactam antibiotics for controlling MDR A. baumannii infections; however, their clinical significance needs to be determined using in vivo studies.</p