3,999 research outputs found
Bifurcation at nonsemisimple 1: - 1 resonance
In this paper a description is given of the bifurcation of periodic solutions occurring when a Hamiltonian system of two degrees of freedom passes through nonsemisimple 1–1 resonance at an equilibrium. A bifurcation like this is found in the planar circular restricted problem of three bodies at the Lagrange equilibriumL 4 when the mass parameter passes through the critical value of Routh. Gegenstand dieses Artikels ist die Verzweigung periodischer Lösungen in Hamilton''schen Systemen mit zwei Freiheitsgraden beim Durchgang durch eine nicht-einfache 1–1-Resonanz an einem Gleichgewicht. Ein Beispiel ist das ebene restringierte Dreikörperproblem am Lagrange-PunktL 4, wenn die Masse durch den kritischen Wert von Routh hindurchgeht
NOTES ON THE FAUNA OF PULAU BERHALA
ABSTRACT NOT AVAILABL
A NOTE ON TWO SPECIES OF MALAYSIAN KING-CRABS (XIPHOSURA)
abstract not availabl
Spontaneous Ratchet Effect in a Granular Gas
The spontaneous clustering of a vibrofluidized granular gas is employed to
generate directed transport in two different compartmentalized systems: a
"granular fountain" in which the transport takes the form of convection rolls,
and a "granular ratchet" with a spontaneous particle current perpendicular to
the direction of energy input. In both instances, transport is not due to any
system-intrinsic anisotropy, but arises as a spontaneous collective symmetry
breaking effect of many interacting granular particles. The experimental and
numerical results are quantitatively accounted for within a flux model.Comment: 4 pages, 5 figures; Fig. 4 has been reduced in size and qualit
Corrections to: \'Constrained normalization of Hamiltonian systems and perturbed Keplerian motion\'
Consider a Hamiltonian system (H, 2n ,). LetM be a symplectic submanifold of (2n ,). The system (H, 2n ,) constrained toM is (HM, M, M). In this paper we give an algorithm which normalizes the system on 2n in such a way that restricted toM we have normalized the constrained system. This procedure is then applied to perturbed Kepler systems such as the lunar problem and the main problem of artificial satellite theory. Wir betrachten ein Hamiltonisches System (H, 2n ,). SeiMein symplectisches Submanifold von (2n ,). Das System (H, 2n ,), aufM beschränkt, ist (HM,M,M). In der vorliegenden Arbeit wird ein Algorithmus vorgeschlagen, der dieses System so auf 2n normalisiert, daß das aufM beschränkte System auch normalisiert ist. Dieser Algorithmus wird dann auf gestörte Keplersysteme, wie z. B. das Hill-sche Mondproblem und das Hauptproblem der Theorie der künstlichen Satelliten, angewendet
Meningococcal pericarditis in the absence of meningitis
Contains fulltext :
4464.pdf (publisher's version ) (Open Access
UEBER EINIGE SOG. RATTENKONIGE
abstract not availabl
Poincar\'{e} cycle of a multibox Ehrenfest urn model with directed transport
We propose a generalized Ehrenfest urn model of many urns arranged
periodically along a circle. The evolution of the urn model system is governed
by a directed stochastic operation. Method for solving an -ball, -urn
problem of this model is presented. The evolution of the system is studied in
detail. We find that the average number of balls in a certain urn oscillates
several times before it reaches a stationary value. This behavior seems to be a
peculiar feature of this directed urn model. We also calculate the Poincar\'{e}
cycle, i.e., the average time interval required for the system to return to its
initial configuration. The result can be easily understood by counting the
total number of all possible microstates of the system.Comment: 10 pages revtex file with 7 eps figure
- …