42 research outputs found
A recombinant Fasciola gigantica 14-3-3 epsilon protein (rFg14-3-3e) modulates various functions of goat peripheral blood mononuclear cells
Background
The molecular structure of Fasciola gigantica 14-3-3 protein has been characterized. However, the involvement of this protein in parasite pathogenesis remains elusive and its effect on the functions of innate immune cells is unknown. We report on the cloning and expression of a recombinant F. gigantica 14-3-3 epsilon protein (rFg14-3-3e), and testing its effects on specific functions of goat peripheral blood mononuclear cells (PBMCs).
Methods
rFg14-3-3e protein was expressed in Pichia pastoris. Western blot and immunofluorescence assay (IFA) were used to examine the reactivity of rFg14-3-3e protein to anti-F. gigantica and anti-rFg14-3-3e antibodies, respectively. Various assays were used to investigate the stimulatory effects of the purified rFg14-3-3e protein on specific functions of goat PBMCs, including cytokine secretion, proliferation, migration, nitric oxide (NO) production, phagocytosis, and apoptotic capabilities. Potential protein interactors of rFg14-3-3e were identified by querying the databases Intact, String, BioPlex and BioGrid. A Total Energy analysis of each of the identified interaction was performed. Gene Ontology (GO) enrichment analysis was conducted using Funcassociate 3.0.
Results
Sequence analysis revealed that rFg14-3-3e protein had 100% identity to 14-3-3 protein from Fasciola hepatica. Western blot analysis showed that rFg14-3-3e protein is recognized by sera from goats experimentally infected with F. gigantica and immunofluorescence staining using rat anti-rFg14-3-3e antibodies demonstrated the specific binding of rFg14-3-3e protein to the surface of goat PBMCs. rFg14-3-3e protein stimulated goat PBMCs to produce interleukin-10 (IL-10) and transforming growth factor beta (TGF-β), corresponding with low levels of IL-4 and interferon gamma (IFN-γ). Also, this recombinant protein promoted the release of NO and cell apoptosis, and inhibited the proliferation and migration of goat PBMCs and suppressed monocyte phagocytosis. Homology modelling revealed 65% identity between rFg14-3-3e and human 14-3-3 protein YWHAE. GO enrichment analysis of the interacting proteins identified terms related to apoptosis, protein binding, locomotion, hippo signalling and leukocyte and lymphocyte differentiation, supporting the experimental findings.
Conclusions
Our data suggest that rFg14-3-3e protein can influence various cellular and immunological functions of goat PBMCs in vitro and may be involved in mediating F. gigantica pathogenesis. Because of its involvement in F. gigantica recognition by innate immune cells, rFg14-3-3e protein may have applications for development of diagnostics and therapeutic interventions
A Portrait of the Transcriptome of the Neglected Trematode, Fasciola gigantica—Biological and Biotechnological Implications
Fasciola gigantica (Digenea) is an important foodborne trematode that causes liver fluke disease (fascioliasis) in mammals, including ungulates and humans, mainly in tropical climatic zones of the world. Despite its socioeconomic impact, almost nothing is known about the molecular biology of this parasite, its interplay with its hosts, and the pathogenesis of fascioliasis. Modern genomic technologies now provide unique opportunities to rapidly tackle these exciting areas. The present study reports the first transcriptome representing the adult stage of F. gigantica (of bovid origin), defined using a massively parallel sequencing-coupled bioinformatic approach. From >20 million raw sequence reads, >30,000 contiguous sequences were assembled, of which most were novel. Relative levels of transcription were determined for individual molecules, which were also characterized (at the inferred amino acid level) based on homology, gene ontology, and/or pathway mapping. Comparisons of the transcriptome of F. gigantica with those of other trematodes, including F. hepatica, revealed similarities in transcription for molecules inferred to have key roles in parasite-host interactions. Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic, and metabolomic explorations of F. gigantica, as well as a basis for applied outcomes such as the development of novel methods of intervention against this neglected parasite
Full-Range Spectral Domain Doppler Optical Coherence Tomography
Spectral domain optical coherence tomography (SD-OCT) systems achieve higher sensitivities compared to time domain OCT systems. However, one of the main challenges in SD-OCT is the obscuring object structure called ghost image or mirror image that arises from the Fourier transform of a real function. We have designed and developed a phaseshifting- based full-range SD-OCT system that we refer to as the dual detection full range SD-OCT. The proposed technique simultaneously obtains the quadrature components of a complex spectral interference. Therefore, the technique enables full range imaging without any loss of speed and is intrinsically less sensitive to movements of the subject. In this paper, we demonstrate that the dual detection technique can be applied to Doppler imaging without loss in the velocity dynamic range since the phase information of the acquired spectra is preserved. The dual detection full range SD-OCT provides a superior signal-to-noise ratio over a conventional SD-OCT since the most sensitive region around the zero path delay is usable. This capability improves the image quality of not only the structural image but also the Doppler image. © 2010 Copyright SPIE - The International Society for Optical Engineering
Optical Coherence Microscope For Invariant High Resolution In Vivo Skin Imaging
A non-invasive, reliable and affordable imaging system with the capability of detecting skin pathologies such as skin cancer would be a valuable tool to use for pre-screening and diagnostic applications. Optical Coherence Microscopy (OCM) is emerging as a building block for in vivo optical diagnosis, where high numerical aperture optics is introduced in the sample arm to achieve high lateral resolution. While high numerical aperture optics enables realizing high lateral resolution at the focus point, dynamic focusing is required to maintain the target lateral resolution throughout the depth of the sample being imaged. In this paper, we demonstrate the ability to dynamically focus in real-time with no moving parts to a depth of up to 2mm in skin-equivalent tissue in order to achieve 3.5μm lateral resolution throughout an 8 cubic millimeter sample. The built-in dynamic focusing ability is provided by an addressable liquid lens embedded in custom-designed optics which was designed for a broadband laser source of 120 nm bandwidth centered at around 800nm. The imaging probe was designed to be low-cost and portable. Design evaluation and tolerance analysis results show that the probe is robust to manufacturing errors and produces consistent high performance throughout the imaging volume
Liquid Lens Enabled Optical Coherence Microscope With Gabor Fusion
A custom optical microscope with an integrated liquid lens to enable an extended depth imaging in biological tissue has been fabricated and shown to provide subcellular resolution using Gabor image fusion in an optical coherence tomography setup. In this paper, we report on the development and assessment path of this technology over the last few years. Specifically, we report on the optical design as well as the MTF prediction and experimental measurements of the new optical microscope head. The microscope head was integrated in a custom optical coherence microscopy setup that is presented. Images of an African frog tadpole, ex vivo human breast excised tissue, and in vivo skin images, acquired with the integrated instrument, are presented. © 2010 Copyright SPIE - The International Society for Optical Engineering
Sub-Cellular Resolution Imaging With Gabor Domain Optical Coherence Microscopy
Optical Coherence Microscopy (OCM) utilizes a high NA microscope objective in the sample arm to achieve an axially and laterally high resolution OCT image. An increase in NA, however, leads to a dramatically decreased depth of focus (DOF), and hence shortens the imaging depth range so that high lateral resolution is maintained only within a small depth region around the focal plane. One solution to increase the depth of imaging while keeping a high lateral resolution is dynamic-focusing. Utilizing the voltage controlled refocus capability of a liquid lens, we have recently presented a solution for invariant high resolution imaging using the liquid lens embedded within a fixed optics hand-held custom microscope designed specifically for optical imaging systems using a broadband light source at 800 nm center wavelength. Subsequently, we have developed a Gabor-Domain Optical Coherence Microscopy (GD-OCM) that utilizes the high speed imaging of spectral domain OCT, the high lateral resolution of OCM, and the ability of real time refocusing of our custom design variable focus objective. In this paper we demonstrate in detail how portions of the infocus cross-sectional images can be extracted and fused to form an invariant lateral resolution image with multiple crosssectional images acquired corresponding to a discrete refocusing step along depth enabled by the varifocal probe. We demonstrate sub-cellular resolution imaging of an African frog tadpole (Xenopus Laevis) taken from a 500 μm x 500 μm cross-section. © 2010 Copyright SPIE - The International Society for Optical Engineering
Liquid lens enabled optical coherence microscope with Gabor fusion
A custom optical microscope with an integrated liquid lens to enable an extended depth imaging in biological tissue has been fabricated and shown to provide subcellular resolution using Gabor image fusion in an optical coherence tomography setup. In this paper, we report on the development and assessment path of this technology over the last few years. Specifically, we report on the optical design as well as the MTF prediction and experimental measurements of the new optical microscope head. The microscope head was integrated in a custom optical coherence microscopy setup that is presented. Images of an African frog tadpole, ex vivo human breast excised tissue, and in vivo skin images, acquired with the integrated instrument, are presented. © 2010 Copyright SPIE - The International Society for Optical Engineering
Developments in optical coherence microscopy
Optical Coherence Microscopy (OCM) utilizes a high NA microscope objective in the sample arm to achieve an axially and laterally high resolution OCT image. An increase in NA, however, leads to a dramatically decreased depth of focus (DOF), and hence shortens the imaging depth range so that high lateral resolution is maintained only within a small depth region around the focal plane. One solution to increase the depth of imaging while keeping a high lateral resolution is dynamic-focusing. Utilizing the voltage controlled refocus capability of a liquid lens, we have recently presented a solution for invariant high resolution imaging using the liquid lens embedded within a fixed optics hand-held custom microscope designed specifically for optical imaging systems using a broadband light source centered at 800 nm with a 120 nm bandwidth. Subsequently, we have developed a Gabor-Domain Optical Coherence Microscopy (GD-OCM) that utilizes the high speed imaging of spectral domain OCT, the high lateral resolution of OCM, and the ability of real time refocusing of our custom design variable focus objective. Finally, key developments in Phase-Resolved Doppler OCT (PR-DOCT) are key enablers to combine high-resolution structural imaging with functional imaging. In this paper we review achievements in GD-OCM and detail how portions of in-focus cross-sectional images can be extracted and fused to form an invariant lateral resolution image with multiple cross-sectional images acquired corresponding to a discrete refocusing step along depth enabled by the varifocal device. We demonstrate sub-cellular resolution imaging of an African frog tadpole (Xenopus Laevis) taken from a 500 μm × 500 μm cross-section as well as cellular imaging in in vivo skin. Finally, A novel dual-detection full-range Fourier-domain optical coherence tomography system was developed that provides 7 μm axial resolution (in air) at about 90 kHz axial scan rate for mirror-image phase resolved Doppler imaging in an African frog tadpole and an in vivo human finger. © 2010 Copyright SPIE - The International Society for Optical Engineering
Performance Of A Liquid Lens Enabled Optical Coherence Microscope With Gabor Fusion
A custom microscope with an integrated Varioptic liquid lens has been fabricated and shown to provide subcellular resolution using Gabor image fusion. MTF testing and final fused images are shown. © 2010 Optical Society of America