809 research outputs found

    Characterization of Standardized Lunar Regolith Simulant Materials

    Get PDF
    Lunar exploration requires scientific and engineering studies using standardized testing procedures that ultimately support flight certification of technologies and hardware. This motivates the development of traceable, standardized lunar regolith simulant (SLRS) materials. For details, refer to the 2005 Workshop on Lunar Regolith Simulant Materials

    The Weibull-Geometric distribution

    Full text link
    In this paper we introduce, for the first time, the Weibull-Geometric distribution which generalizes the exponential-geometric distribution proposed by Adamidis and Loukas (1998). The hazard function of the last distribution is monotone decreasing but the hazard function of the new distribution can take more general forms. Unlike the Weibull distribution, the proposed distribution is useful for modeling unimodal failure rates. We derive the cumulative distribution and hazard functions, the density of the order statistics and calculate expressions for its moments and for the moments of the order statistics. We give expressions for the R\'enyi and Shannon entropies. The maximum likelihood estimation procedure is discussed and an algorithm EM (Dempster et al., 1977; McLachlan and Krishnan, 1997) is provided for estimating the parameters. We obtain the information matrix and discuss inference. Applications to real data sets are given to show the flexibility and potentiality of the proposed distribution

    Search for Optical Pulsation in M82 X-2

    Get PDF
    We report on a search for optical pulsation from M82 X-2 over a range of periods. M82 X-2 is an X-ray pulsar with a 1.37s average spin period and a 2.5 day sinusoidal modulation. The observations were done with the ARray Camera for Optical to Near-IR Spectrophotometry at the 200 inch Hale telescope at the Palomar Observatory. We performed H test and χ^2 statistical analysis. No significant optical pulsations were found in the wavelength range of 3000–11000 Å with a pulsation period between 1.36262 and 1.37462 s. We found an upper limit on pulsed emission in the 4000–8000 Å wavelength range to be fainter than ~20.5 mag_(AB) , corresponding to ~23 μJy

    Wide-gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging

    Get PDF
    Flows of dense emulsions show many complex features among which long range nonlocal effects pose a problem for macroscopic characterization. In order to get around this problem, we study the flows of several dense emulsions in a wide-gap Couette geometry. We couple macroscopic rheometric experiments and local velocity measurements through MRI techniques. As concentration heterogeneities can be expected, we designed a method to measure the local droplet concentration in emulsions with a MRI device. In contrast to dense suspensions of rigid particles where very fast migration occurs under shear, we show that no migration takes place in dense emulsions even for strains as large as 100 000 in our systems. As a result of the absence of migration and of finite size effect, we are able to determine very precisely the local rheological behavior of several dense emulsions. As the materials are homogeneous, this behavior can also be inferred from purely macroscopic measurements. We thus suggest that properly analyzed purely macroscopic measurements in a wide-gap Couette geometry can be used as a tool to study the local constitutive laws of dense emulsions. All behaviors are basically consistent with Herschel-Bulkley laws of index 0.5, but discrepancies exist at the approach of the yield stress due to slow shear flows below the apparent yield stress in the case of a strongly adhesive emulsion. The existence of a constitutive law accounting for all flows contrasts with previous results obtained within a microchannel by Goyon et al. (2008): the use of a wide-gap Couette geometry is likely to prevent here from nonlocal finite size effects; it also contrasts with the observations of B\'ecu et al. (2006)

    The Murchison Blue Angel Inclusion: Its Mineralogy and Petrology

    Get PDF
    Hibonite-bearing inclusions found in CV and CM chondrites are thought to contain some of the earliest phases condensed from the solar nebula. A well preserved inclusion of this type, found by R. Becker, has been isolated from the Murchison CM chondrite for extensive analysis

    A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics

    Get PDF
    We demonstrate single-photon counting at 1550 nm with titanium-nitride (TiN) microwave kinetic inductance detectors. Energy resolution of 0.4 eV and arrival-time resolution of 1.2 microseconds are achieved. 0-, 1-, 2-photon events are resolved and shown to follow Poisson statistics. We find that the temperature-dependent frequency shift deviates from the Mattis-Bardeen theory, and the dissipation response shows a shorter decay time than the frequency response at low temperatures. We suggest that the observed anomalous electrodynamics may be related to quasiparticle traps or subgap states in the disordered TiN films. Finally, the electron density-of-states is derived from the pulse response.Comment: 4 pages, 3 figure

    Interaction and flocculation of spherical colloids wetted by a surface-induced corona of paranematic order

    Full text link
    Particles dispersed in a liquid crystal above the nematic-isotropic phase transition are wetted by a surface-induced corona of paranematic order. Such coronas give rise to pronounced two-particle interactions. In this article, we report details on the analytical and numerical study of these interactions published recently [Phys. Rev. Lett. 86, 3915 (2001)]. We especially demonstrate how for large particle separations the asymptotic form of a Yukawa potential arises. We show that the Yukawa potential is a surprisingly good description for the two-particle interactions down to distances of the order of the nematic coherence length. Based on this fact, we extend earlier studies on a temperature induced flocculation transition in electrostatically stabilized colloidal dispersions [Phys. Rev. E 61, 2831 (2000)]. We employ the Yukawa potential to establish a flocculation diagram for a much larger range of the electrostatic parameters, namely the surface charge density and the Debye screening length. As a new feature, a kinetically stabilized dispersion close to the nematic-isotropic phase transition is found.Comment: Revtex v4.0, 16 pages, 12 Postscript figures. Accepted for publication in Phys. Rev.

    Simulating Particle Dispersions in Nematic Liquid-Crystal Solvents

    Full text link
    A new method is presented for mesoscopic simulations of particle dispersions in nematic liquid crystal solvents. It allows efficient first-principle simulations of the dispersions involving many particles with many-body interactions mediated by the solvents. A simple demonstration is shown for the aggregation process of a two dimentional dispersion.Comment: 5 pages, 5 figure
    • …
    corecore