4,241 research outputs found

    STABILISING THE HIP AND PELVIS DURING RUNNING: IS THERE AN EXPLOSIVE SOLUTION FOR UNINJURED ATHLETES?

    Get PDF
    We compared the effectiveness of a conventional (slow-controlled) to a novel (explosive) eight week training program designed to improve lateral stability at the pelvis and hip during a running task. Parameters included: frontal-plane kinematics (500 Hz); electromyography recordings (1000 Hz) of gluteus medius (GM) and tensor fasciae latae (both sides); and oxygen kinetics. The groups were matched for hip and pelvis kinematics. After the training, reduction in peak angles at the hip and pelvis improved compared to baseline data regardless of group membership. Differences between groups were also found. Only the explosively trained group displayed changed GM onset times, where GM activation occurred earlier prior to ground contact when running. These differences in GM onsets support the notion of specific training adaptations, and the mechanism for hip and pelvis stability may not be the same for both groups. In addition, only the explosive group improved running performance (economy) further justifying this method of prescription

    ACUTE EFFECTS OF STRENGTH TRAINING ON RUNNING ECONOMY

    Get PDF
    Sequencing strength training before aerobic conditioning is practised without empirical support. This study explored the acute effects of strength training on running economy and 3-D kinematics in five males. Running was performed on a treadmill at 12 and 14 km/h on three separate occasions. Trial 1 and 2 involved no strength training with data used to assess response stability of the variables. Before Trial 3, three sets of three repetitions at 85% of 1 repetition maximum of squat, bench press and deadlift with 3-5 minutes of rest were performed. Compared to Trial 2 no significant differences were observed when strength training was performed. Only a tendency of increased knee flexion (4.5°) at foot strike at the higher running velocity was observed. This suggests that running kinematics were changed exposing participants to long-term chronic injuries

    The visual, the auditory and the haptic – A user study on combining modalities in virtual worlds

    Get PDF
    Fröhlich J, Wachsmuth I. The visual, the auditory and the haptic – A user study on combining modalities in virtual worlds. In: Shumaker R, ed. Virtual Augmented and Mixed Reality. Designing and Developing Augmented and Virtual Environments. Lecture Notes in Computer Science. Vol 8021. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013: 159-168.In order to make a step further towards understanding the impact of multi-modal stimuli in Virtual Reality we conducted a user study with 80 participants performing tasks in a virtual pit environment. Participants were divided into four groups, each presented a different combination of multi-sensory stimuli. Those included real-time 3D graphics, audio stimuli (ambient, static and event sounds), and haptics consisting of wind and tactile feedback when touching objects. A presence questionnaire was used to evaluate subjectively reported presence on the one hand, and on the other physiological sensors were used to measure heart rate and skin conductance as an objective measure. Results strongly indicate that an increase of modalities does not automatically result in an increase of presence

    The Ionization Fraction in Dense Molecular Gas II: Massive Cores

    Full text link
    We present an observational and theoretical study of the ionization fraction in several massive cores located in regions that are currently forming stellar clusters. Maps of the emission from the J = 1-> O transitions of C18O, DCO+, N2H+, and H13CO+, as well as the J = 2 -> 1 and J = 3 -> 2 transitions of CS, were obtained for each core. Core densities are determined via a large velocity gradient analysis with values typically 10^5 cm^-3. With the use of observations to constrain variables in the chemical calculations we derive electron fractions for our overall sample of 5 cores directly associated with star formation and 2 apparently starless cores. The electron abundances are found to lie within a small range, -6.9 < log10(x_e) < -7.3, and are consistent with previous work. We find no difference in the amount of ionization fraction between cores with and without associated star formation activity, nor is any difference found in electron abundances between the edge and center of the emission region. Thus our models are in agreement with the standard picture of cosmic rays as the primary source of ionization for molecular ions. With the addition of previously determined electron abundances for low mass cores, and even more massive cores associated with O and B clusters, we systematically examine the ionization fraction as a function of star formation activity. This analysis demonstrates that the most massive sources stand out as having the lowest electron abundances (x_e < 10^-8).Comment: 35 pages (8 figures), using aaspp4.sty, to be published in Astrophysical Journa

    The Amyloid Fibril-Forming β-Sheet Regions of Amyloid β and α-Synuclein Preferentially Interact with the Molecular Chaperone 14-3-3ζ.

    Get PDF
    14-3-3 proteins are abundant, intramolecular proteins that play a pivotal role in cellular signal transduction by interacting with phosphorylated ligands. In addition, they are molecular chaperones that prevent protein unfolding and aggregation under cellular stress conditions in a similar manner to the unrelated small heat-shock proteins. In vivo, amyloid β (Aβ) and α-synuclein (α-syn) form amyloid fibrils in Alzheimer's and Parkinson's diseases, respectively, a process that is intimately linked to the diseases' progression. The 14-3-3ζ isoform potently inhibited in vitro fibril formation of the 40-amino acid form of Aβ (Aβ40) but had little effect on α-syn aggregation. Solution-phase NMR spectroscopy of 15N-labeled Aβ40 and A53T α-syn determined that unlabeled 14-3-3ζ interacted preferentially with hydrophobic regions of Aβ40 (L11-H21 and G29-V40) and α-syn (V3-K10 and V40-K60). In both proteins, these regions adopt β-strands within the core of the amyloid fibrils prepared in vitro as well as those isolated from the inclusions of diseased individuals. The interaction with 14-3-3ζ is transient and occurs at the early stages of the fibrillar aggregation pathway to maintain the native, monomeric, and unfolded structure of Aβ40 and α-syn. The N-terminal regions of α-syn interacting with 14-3-3ζ correspond with those that interact with other molecular chaperones as monitored by in-cell NMR spectroscopy

    Column Supported Embankments with Geosynthetic Encased Columns: Validity of the Unit Cell Concept

    Get PDF
    Abstract: Column supported embankments (CSEs) are used to overcome common problems associated with the construction of embankments over soft compressible soils. The use of granular columns as deep foundation elements for CSEs can be problematic in soft soils due to the lack of adequate lateral confining pressure, particularly in the upper portion of the column. Using a high-strength geosynthetic for granular column confinement forms geosynthetic encased columns (GECs); the confinement imposed by the geosynthetic increases the strength of the column, and also prevents its lateral displacement into the soft surrounding soil. This paper presents the results of finite element analyses of a hypothetical geosynthetic reinforced column supported embankment (GRCSE) (i.e., a CSE underlain by geosynthetic reinforcement) that is constructed with GECs as the deep foundation elements. Full three-dimensional (3-d), 3-d unit cell, and axisymmetric unit cell analyses of the GRCSE were carried out to investigate the validity of the unit cell concept. The effect of the degree of nodal constraint along the bottom boundary when numerically modeling GRCSEs was also studied in this paper. Numerical results show that a full 3-d idealization is required to more precisely determine the tension forces that are produced in the geosynthetic reinforcement that underlies the GRCSE. A number of design parameters such as the average vertical stresses carried by the GECs, lateral displacement of the GECs, and the maximum settlement of the soft foundation soil, however, can be successfully calculated using unit cell analyses

    From presence to consciousness through virtual reality

    Get PDF
    Immersive virtual environments can break the deep, everyday connection between where our senses tell us we are and where we are actually located and whom we are with. The concept of 'presence' refers to the phenomenon of behaving and feeling as if we are in the virtual world created by computer displays. In this article, we argue that presence is worthy of study by neuroscientists, and that it might aid the study of perception and consciousness
    • …
    corecore