3,962 research outputs found

    Crystallization of biological macromolecules in a reduced gravity environment

    Get PDF
    A battery of micro techniques were developed which allow the screening of a large number of conditions using only a small amount of the macromolecule. The need to develop methodologies for growing large crystals required for neutron diffraction studies is discussed

    Surface dissolution UV imaging for characterization of superdisintegrants and their impact on drug dissolution

    Get PDF
    Superdisintegrants are a key excipient used in immediate release formulations to promote fast tablet disintegration, therefore understanding the impact of superdisintegrant variability on product performance is important. The current study examined the impact of superdisintegrant critical material attributes (viscosity for sodium starch glycolate (SSG), particle size distribution (PSD) for croscarmellose sodium (CCS)) on their performance (swelling) and on drug dissolution using surface dissolution UV imaging. Acidic and basic pharmacopoeia (compendial) media were used to assess the role of varying pH on superdisintegrant performance and its effect on drug dissolution. A highly soluble (paracetamol) and a poorly soluble (carbamazepine) drug were used as model compounds and drug compacts and drug-excipient compacts were prepared for the dissolution experiments. The presence of a swelled SSG or CCS layer on the compact surface, due to the fast excipient hydration capacity, upon contact with dissolution medium was visualized. The swelling behaviour of superdisintegrants depended on excipient critical material attributes and the pH of the medium. Drug dissolution was faster in presence compared to superdisintegrant absence due to improved compact wetting or compact disintegration. The improvement in drug dissolution was less pronounced with increasing SSG viscosity or CCS particle size. Drug dissolution was slightly more complete in basic compared to acidic conditions in presence of the studied superdisintegrants for the highly soluble drug attributed to the increased excipient hydration capacity and the fast drug release through the swelled excipient structure. The opposite was observed for the poorly soluble drug as potentially the improvement in drug dissolution was compromised by drug release from the highly swelled structure. The use of multivariate data analysis revealed the influential role of excipient and drug properties on the impact of excipient variability on drug dissolution.</p

    Differential binding patterns of anti-sulfatide antibodies to glial membranes

    Get PDF
    Sulfatide is a major glycosphingolipid in myelin and a target for autoantibodies in autoimmune neuropathies. However neuropathy disease models have not been widely established, in part because currently available monoclonal antibodies to sulfatide may not represent the diversity of anti-sulfatide antibody binding patterns found in neuropathy patients. We sought to address this issue by generating and characterising a panel of new anti-sulfatide monoclonal antibodies. These antibodies have sulfatide reactivity distinct from existing antibodies in assays and in binding to peripheral nerve tissues and can be used to provide insights into the pathophysiological roles of anti-sulfatide antibodies in demyelinating neuropathies

    Developing an applied model for making decisions towards the end of life about care for someone with dementia

    Get PDF
    BACKGROUND: Many people with dementia reach the end-of-life without an advance care plan. Many are not ready to have conversations about end-of-life, and decision-making is left to their families and professionals when they no longer have capacity. Carers may benefit from further support with decision-making. To develop this support, it is important to understand the decision-making process. AIM: Explore with family carers and people living with dementia the decision-making process and factors that influence decision-making in dementia end of life care, to produce a model of decision-making in the context of dementia end-of-life care. METHODS: Semi-structured interviews with 21 family carers and 11 people with dementia in England (2018–2019) from memory clinics, general practice and carer organisations. Interviews were analysed using thematic analysis and findings were mapped onto the Interprofessional Shared Decision Making model, refined to produce a modified model of decision-making in dementia. RESULTS: Participants described five key decisions towards the end-of-life as examples of decision making. We used these experiences to produce a modified model of decision-making in dementia end-of-life-care. The model considers the contextual factors that influence the decision-making process, including: personal preferences; advance care planning and Lasting Power of Attorney; capacity and health and wellbeing of the person with dementia; support from others and clarity of roles. The decision-making process consists of seven inter-linked stages: 1) identifying the decision maker or team; 2) sharing and exchanging information; 3) clarifying values and preferences; 4) managing and considering emotions; 5) considering the feasibility of options; 6) balancing preferred choice and the actual choice; and 7) implementation and reflecting on outcomes. CONCLUSIONS: The modified model breaks down the decision-making process and attempts to simplify the process while capturing the subtle nuances of decision making. It provides a framework for conversations and supporting decisions by carers

    The evolution of the class A scavenger receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The class A scavenger receptors are a subclass of a diverse family of proteins defined based on their ability to bind modified lipoproteins. The 5 members of this family are strikingly variable in their protein structure and function, raising the question as to whether it is appropriate to group them as a family based on their ligand binding abilities.</p> <p>Results</p> <p>To investigate these relationships, we defined the domain architecture of each of the 5 members followed by collecting and annotating class A scavenger receptor mRNA and amino acid sequences from publicly available databases. Phylogenetic analyses, sequence alignments, and permutation tests revealed a common evolutionary ancestry of these proteins, indicating that they form a protein family. We postulate that 4 distinct gene duplication events and subsequent domain fusions, internal repeats, and deletions are responsible for the diverse protein structures and functions of this family. Despite variation in domain structure, there are highly conserved regions across all 5 members, indicating the possibility that these regions may represent key conserved functional motifs.</p> <p>Conclusions</p> <p>We have shown with significant evidence that the 5 members of the class A scavenger receptors form a protein family. We have indicated that these receptors have a common origin which may provide insight into future functional work with these proteins.</p

    A novel cellular pathway of antigen presentation and CD4 T cell activation in vivo

    Get PDF
    Dendritic cell activation of CD4 T cells in the lymph node draining a site of infection or vaccination is widely considered the central event in initiating adaptive immunity. The accepted dogma is that this occurs by stimulating local activation and antigen acquisition by dendritic cells, with subsequent lymph node migration, however the generalizability of this mechanism is unclear. Here we show that in some circumstances antigen can bypass the injection site inflammatory response, draining freely and rapidly to the lymph nodes where it interacts with subcapsular sinus (SCS) macrophages resulting in their death. Debris from these dying SCS macrophages is internalized by monocytes recruited from the circulation. This coordinated response leads to antigen presentation by monocytes and interactions with naïve CD4 T cells that can drive the initiation of T cell and B cell responses. These studies demonstrate an entirely novel pathway leading to initiation of adaptive immune responses in vivo

    The Ionization Fraction in Dense Molecular Gas II: Massive Cores

    Full text link
    We present an observational and theoretical study of the ionization fraction in several massive cores located in regions that are currently forming stellar clusters. Maps of the emission from the J = 1-> O transitions of C18O, DCO+, N2H+, and H13CO+, as well as the J = 2 -> 1 and J = 3 -> 2 transitions of CS, were obtained for each core. Core densities are determined via a large velocity gradient analysis with values typically 10^5 cm^-3. With the use of observations to constrain variables in the chemical calculations we derive electron fractions for our overall sample of 5 cores directly associated with star formation and 2 apparently starless cores. The electron abundances are found to lie within a small range, -6.9 < log10(x_e) < -7.3, and are consistent with previous work. We find no difference in the amount of ionization fraction between cores with and without associated star formation activity, nor is any difference found in electron abundances between the edge and center of the emission region. Thus our models are in agreement with the standard picture of cosmic rays as the primary source of ionization for molecular ions. With the addition of previously determined electron abundances for low mass cores, and even more massive cores associated with O and B clusters, we systematically examine the ionization fraction as a function of star formation activity. This analysis demonstrates that the most massive sources stand out as having the lowest electron abundances (x_e < 10^-8).Comment: 35 pages (8 figures), using aaspp4.sty, to be published in Astrophysical Journa

    Chromium Tolerant Microbial Communities from the Chesapeake Bay Watershed

    Get PDF
    Chromium tolerant bacteria were enumerated from portions of the Chesapeake Bay watershed and examined for their potential to reduce Cr(VI). Water and sediment samples were collected from various locations in Baltimore Harbor and Bear Creek, as well as Sandy Point State Park in Maryland and the Anacostia River in Washington, DC. Samples were spread onto agar plates with CrO42- (5 ppm) as the sole terminal electron acceptor. Plates were incubated anaerobically and colony forming units (CFU) enumerated. CFU arising on minimal-CrO42- medium ranged from 103-104 mL-1 or g-1 and community estimates from sites in proximity to Baltimore City were approximately 6-30X higher than distal sites. Bacterial identification by BIOLOGâ„¢ or 16S rRNA sequencing indicated the presence of bacteria of the genera Klebsiella, Pseudomonas, Burkholderia, Kluyvera and others. Typical Cr(VI) reduction rates by these isolates were significantly lower than Shewanella oneidensis, a known metal-reducing bacterium. Results suggested that microbial communities in the Chesapeake Bay watershed, particularly in Baltimore Harbor and Bear Creek, had a high tolerance for Cr(VI) and/or could grow slowly with Cr(VI) as a terminal electron acceptor. However, the isolates did not rapidly degrade Cr(VI) in the laboratory
    • …
    corecore