214 research outputs found

    Developmental Functions of miR156-Regulated \u3cem\u3eSQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL)\u3c/em\u3e Genes in \u3cem\u3eArabidopsis thaliana\u3c/em\u3e

    Get PDF
    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot developmentā€”the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transitionā€”are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development

    Effects of Infrared Radiation and Heat on Human Skin Aging in vivo

    Get PDF
    Sunlight damages human skin, resulting in a wrinkled appearance. Since natural sunlight is polychromatic, its ultimate effects on the human skin are the result of not only the action of each wavelength separately, but also interactions among the many wavelengths, including UV, visible light, and infrared (IR). In direct sunlight, the temperature of human skin rises to about 40Ā°C following the conversion of absorbed IR into heat. So far, our knowledge of the effects of IR radiation or heat on skin aging is limited. Recent work demonstrates that IR and heat exposure each induces cutaneous angiogenesis and inflammatory cellular infiltration, disrupts the dermal extracellular matrix by inducing matrix metalloproteinases, and alters dermal structural proteins, thereby adding to premature skin aging. This review provides a summary of current research on the effects of IR radiation and heat on aging in human skin in vivo

    Primary Alveolar Soft Part Sarcoma of the Lung

    Get PDF
    Alveolar soft part sarcoma (ASPS) is a rare epithelial-like soft tissue sarcoma. The two main sites of its occurrence are the lower extremities in adults and the head and neck in children. Primary pulmonary involvement of this sarcoma, without evidence of soft tissue tumor elsewhere, is very exceptional. We present a case of primary ASPS of the lung in a 42-yr-old woman. A computed tomographic scan of the thorax demonstrated a well-circumscribed, solid tumor located in the right upper lobe. The mass was resected by right upper lobectomy. After 5 months, three metastatic lesions, involving lumbar vertebrae and occipital scalp, were found. Histologically, the tumor consisted of alveolar nests of large polygonal tumor cells, the cytoplasm of which frequently revealed periodic acid-Schiff-positive, diastase-resistant intracytoplasmic rod-like structures. On immunohistochemical staining, the tumor cells were positive only for vimentin and alpha-smooth muscle actin. Ultrastuctural study using electron microscopy revealed characteristic electron-dense, rhomboid intracytoplasmic crystals

    X-chromosome Inactivation Patterns in Korean Women with Idiopathic Recurrent Spontaneous Abortion

    Get PDF
    Recurrent spontaneous abortion (RSA) defines as two or more consecutive losses at ā‰¤20 weeks of gestation and affects an estimated 1 of every 100 couples wishing to have children. However, it remains a poorly understood phenomenon. Recent reports observed a significant association between highly skewed X chromosome and RSA, supporting that X chromosome inactivation might be an important and previously unknown cause of RSA. X-inactivation pattern, using polymeric X-linked women with idiopathic RSA and 80 control subjects with a single successful pregnancy and no history of spontaneous abortion. The ratio of heterozygotes was 68.2% (45/66) in women with RSA and 67.5% (54/80) in control group. Among 45 informative RSA cases, only 1 (2.2%) woman showed extreme skewed X inactivation (ā‰„90%) and 4 (8.9%) had mild skewed inactivation (ā‰„85%). In 54 heterozygous control subjects, 5 (9.3%) women showed extreme skewed X inactivation and 7 (13.0%) had mild one. The frequency of skewed X inactivation between RSA patients and control group was not significantly different (p>0.05). This finding suggests that skewed X chromosome be not associated with unexplained RSA patients
    • ā€¦
    corecore