1,234 research outputs found
Ion dynamics and acceleration in relativistic shocks
Ab-initio numerical study of collisionless shocks in electron-ion
unmagnetized plasmas is performed with fully relativistic particle in cell
simulations. The main properties of the shock are shown, focusing on the
implications for particle acceleration. Results from previous works with a
distinct numerical framework are recovered, including the shock structure and
the overall acceleration features. Particle tracking is then used to analyze in
detail the particle dynamics and the acceleration process. We observe an energy
growth in time that can be reproduced by a Fermi-like mechanism with a reduced
number of scatterings, in which the time between collisions increases as the
particle gains energy, and the average acceleration efficiency is not ideal.
The in depth analysis of the underlying physics is relevant to understand the
generation of high energy cosmic rays, the impact on the astrophysical shock
dynamics, and the consequent emission of radiation.Comment: 5 pages, 3 figure
Long-time evolution of magnetic fields in relativistic GRB shocks
We investigate the long-time evolution of magnetic fields generated by the
two-stream instability at ultra- and sub-relativistic astrophysical
collisionless shocks. Based on 3D PIC simulation results, we introduce a 2D toy
model of interacting current filaments. Within the framework of this model, we
demonstrate that the field correlation scale in the region far downstream the
shock grows nearly as the light crossing time, lambda(t) ~ ct, thus making the
diffusive field dissipation inefficient. The obtained theoretical scaling is
tested using numerical PIC simulations. This result extends our understanding
of the structure of collisionless shocks in gamma-ray bursts and other
astrophysical objects.Comment: 5 pages. 2 figures. Submitted to ApJ
Use of a Smartphone for Improved Self-Management of Pulmonary Rehabilitation
Patients suffering from chronic respiratory disease need to follow a rehabilitative exercise programme, in order to self-manage their illness and improve quality of life. Adherence to the programme is highly dependent on professional support from a physiotherapist and hence declines when patients seek to self-manage in the home. A number of requirements were identified for a Smartphone-based application in which patients are supported remotely and given automatic feedback during exercise. An application is described which will improve adherence during pulmonary rehabilitation
Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source
Molecular contamination of a grazing incidence collector for extreme
ultraviolet (EUV) lithography was experimentally studied. A carbon film was
found to have grown under irradiation from a pulsed tin plasma discharge. Our
studies show that the film is chemically inert and has characteristics that are
typical for a hydrogenated amorphous carbon film. It was experimentally
observed that the film consists of carbon (~70 at. %), oxygen (~20 at. %) and
hydrogen (bound to oxygen and carbon), along with a few at. % of tin. Most of
the oxygen and hydrogen are most likely present as OH groups, chemically bound
to carbon, indicating an important role for adsorbed water during the film
formation process. It was observed that the film is predominantly sp3
hybridized carbon, as is typical for diamond-like carbon. The Raman spectra of
the film, under 514 and 264 nm excitation, are typical for hydrogenated
diamond-like carbon. Additionally, the lower etch rate and higher energy
threshold in chemical ion sputtering in H2 plasma, compared to
magnetron-sputtered carbon films, suggests that the film exhibits diamond-like
carbon properties.Comment: 18 pages, 10 figure
Chemical processes causing spoilage of oil and fat products
Article is devoted to the problem of spoilage of oil and fat products in the course of their production, transportation and storage which is caused by the hydrolytic and oxidative processes leading to deterioration of organoleptic properties of fat and oil products and decrease in their nutrition value. Chemical basics of hydrolysis of triacylglycerols are considered in detail. The mechanisms of an acid and base catalysis of hydrolysis of acyl bonds are presented. The mechanisms of lipid peroxidation, antioxidant action of ascorbic acid and ?-tocopherol are shown. Influence of natural vegetable emulsifiers and antioxidant vitamins on quality of margarine and spreads during storage is shown
Effects of transcranial focal electrical stimulation via tripolar concentric ring electrodes on pentylenetetrazole-induced seizures in rats
Purpose: To study the effects of noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCRE) on the electrographic and behavioral activity from pentylenetetrazole (PTZ)-induced seizures in rats.
Methods: The TCREs were attached to the rat scalp. PTZ was administered and, after the first myoclonic jerk was observed, TFS was applied to the TFS treated group. The electroencephalogram (EEG) and behavioral activity were recorded and studied.
Results: In the case of the TFS treated group, after TFS, there was a significant (p = 0.001) decrease in power compared to the control group in delta, theta, and alpha frequency bands. The number of myoclonic jerks was significantly different (p = 0.002) with median of 22 and 4.5 for the control group and the TFS treated groups, respectively. The duration of myoclonic activity was also significantly different (p = 0.031) with median of 17.56 min for the control group versus 8.63 min for the TFS treated group. At the same time there was no significant difference in seizure onset latency and maximal behavioral seizure activity score between control and TFS treated groups.
Conclusions: TFS via TCREs interrupted PTZ-induced seizures and electrographic activity was reduced toward the “baseline.” The significantly reduced electrographic power, number of myoclonic jerks, and duration of myoclonic activity of PTZ-induced seizures suggests that TFS may have an anticonvulsant effect
Cluster magnetic fields from large-scale-structure and galaxy-cluster shocks
The origin of the micro-Gauss magnetic fields in galaxy clusters is one of
the outstanding problem of modern cosmology. We have performed
three-dimensional particle-in-cell simulations of the nonrelativistic Weibel
instability in an electron-proton plasma, in conditions typical of cosmological
shocks. These simulations indicate that cluster fields could have been produced
by shocks propagating through the intergalactic medium during the formation of
large-scale structure or by shocks within the cluster. The strengths of the
shock-generated fields range from tens of nano-Gauss in the intercluster medium
to a few micro-Gauss inside galaxy clusters.Comment: 4 pages, 2 color figure
- …