7 research outputs found

    Emery-Dreifuss muscular dystrophy Type 1 is associated with a high risk of malignant ventricular arrhythmias and end-stage heart failure

    Get PDF
    BACKGROUND AND AIMS: Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterise the cardiac complications of EMD variants. METHODS: Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidence in male and female variant-carriers was determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared to consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS: Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers (mean [SD] ages 33.4 [13.3] and 43.3 [16.8] years, respectively). Nine (23.6%) males developed MVA and five (13.2%) developed ESHF during a median [IQR] follow-up of 65.0 [24.3, 109.5] months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median [IQR] age of 58.6 [53.2, 60.4] years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank p = 0.49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank p = 0.09). CONCLUSIONS: Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease

    Emery-Dreifuss Muscular Dystrophy 1 is associated with high risk of malignant ventricular arrhythmias and end-stage heart failure.

    Get PDF
    BACKGROUND AND AIMS Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterise the cardiac complications of EMD variants. METHODS Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidence in male and female variant-carriers was determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared to consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers (mean [SD] ages 33.4 [13.3] and 43.3 [16.8] years, respectively). Nine (23.6%) males developed MVA and five (13.2%) developed ESHF during a median [IQR] follow-up of 65.0 [24.3, 109.5] months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median [IQR] age of 58.6 [53.2, 60.4] years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank p = 0.49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank p = 0.09). CONCLUSIONS Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease.The work reported in this publication was funded by: a British Heart Foundation Clinical Research Training Fellowship to D.E.C. (FS/CRTF/ 20/24022); a British Heart Foundation Clinical Research Training fellowship to A.P. (FS/18/82/34024); The Ministry of Health, Italy, project RC-2022-2773270 to E.B.; the National Institutes of Health (NIH) (R01HL69071, R01HL116906, R01HL147064, NIH/NCATS UL1 TR002535, and UL1 TR001082) to L.M.; and support from the Rose Foundation for K.M.S

    Functional Antibodies Against SARS-CoV-2 Receptor Binding Domain Variants with Mutations N501Y or E484K in Human Milk from COVID-19-Vaccinated, -Recovered, and -Unvaccinated Women

    No full text
    Background: New variants are evolving in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and receptor binding domain (RBD) mutations have been associated with a higher capacity to evade neutralizing antibodies (NAbs). We aimed at determining the impact of COVID-19 vaccine and infection on human milk antibody titers and activity against the RBD mutations from SARS-CoV-2 variants of concern. Materials and Methods: Milk samples were collected from 19 COVID-19 vaccinated women, 10 women who had a positive COVID-19 PCR test, and 13 unvaccinated women. The titers and NAbs of secretory IgA (SIgA)/IgA, secretory IgM (IgM)/IgM, and IgG against SARS-CoV-2 RBD with mutations N501Y or E484K were measured by using ELISA and a surrogate virus neutralization assay. Results: The titers of human milk IgG against N501Y were higher in the COVID-19 vaccine group than in the no-vaccine group but comparable with the COVID-19 PCR group. Other antibody titers did not differ between the three groups. The titers of SIgA/IgA were higher than those of SIgM/IgM and IgG in all three groups. The titers of SIgM/IgM and the inhibition of NAbs were higher against the mutation E484K than N501Y. Milk NAb did not differ between the three groups, but the inhibition of NAb against binding of the two mutant RBD proteins to their receptor was higher in the COVID-19 vaccine and PCR groups than in milk from prepandemic women. Conclusions: COVID-19 vaccination and exposure of mothers to SARS-CoV-2 influenced the titers and NAbs in breast milk against the variants of concern

    Influence of Previous COVID-19 and Mastitis Infections on the Secretion of Brain-Derived Neurotrophic Factor and Nerve Growth Factor in Human Milk

    No full text
    Background: Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) play a critical role in neurodevelopment, where breast milk is a significant dietary source. The impact of previous COVID-19 infection and mastitis on the concentration of BDNF and NGF in human milk was investigated. Methods: Concentrations of BDNF and NGF were measured via ELISA in human milk samples collected from 12 mothers with a confirmed COVID-19 PCR, 13 mothers with viral symptoms suggestive of COVID-19, and 22 unexposed mothers (pre-pandemic Ctl-2018). These neurotrophins were also determined in 12 mothers with previous mastitis and 18 mothers without mastitis. Results: The NGF concentration in human milk was lower in the COVID-19 PCR and viral symptoms groups than in the unexposed group, but BDNF did not differ significantly. Within the COVID-19 group, BDNF was higher in mothers who reported headaches or loss of smell/taste when compared with mothers without the respective symptom. BDNF was lower in mothers with mastitis than in mothers without mastitis. Conclusions: Previous COVID-19 and mastitis infections changed differently the secretion of NGF and BDNF in human milk. Whether the changes in NGF and BDNF levels in milk from mothers with infection influence their infant’s development remains to be investigated
    corecore