15 research outputs found

    Mechanisms, predictors, and evolution of severe peri-device leaks with two different left atrial appendage occluders.

    Get PDF
    AIMS Incomplete left atrial appendage occlusion (LAAO) due to peri-device leak (PDL) is a limitation of the therapy. The Amulet IDE trial is the largest randomized head-to-head trial comparing the Amulet and Watchman 2.5 LAAO devices with fundamentally different designs. The predictors and mechanistic factors impacting differences in PDLs within the Amulet IDE trial are assessed in the current analysis. METHODS AND RESULTS An independent core lab analysed all images for the presence or absence of severe PDL (>5 mm). The incidence, mechanistic factors, predictors using propensity score-matched controls, and evolution of severe PDLs through 18 months were assessed. Of the 1878 patients randomized in the trial, the Amulet occluder had significantly fewer severe PDLs than the Watchman device at 45 days (1.1 vs. 3.2%, P < 0.001) and 12 months (0.1 vs. 1.1%, P < 0.001). Off-axis deployment or missed lobes were leading mechanistic PDL factors in each device group. Larger left atrial appendage (LAA) dimensions including orifice diameter, landing zone diameter, and depth predicted severe PDL with the Watchman device, with no significant anatomical limitations noted with the Amulet occluder. Procedural and device implant predictors were found with the Amulet occluder attributed to the learning curve with the device. A majority of Watchman device severe PDLs did not resolve over time through 18 months. CONCLUSION The dual-occlusive Amplatzer Amulet LAA occluder provided improved LAA closure compared with the Watchman 2.5 device. Predictors and temporal observations of severe PDLs were identified in the Amulet IDE trial. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov Unique identifier NCT02879448

    Reply

    No full text

    Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography

    No full text
    International audienceAims: Abnormal computed tomography coronary angiography (CTCA) often leads to stress testing to determine haemodynamic significance of stenosis. We hypothesized that instead, this could be achieved by fusion imaging of the coronary anatomy with 3D echocardiography (3DE)-derived resting myocardial deformation.Methods and results: We developed fusion software that creates combined 3D displays of the coronary arteries with colour maps of longitudinal strain and tested it in 28 patients with chest pain, referred for CTCA (256 Philips scanner) who underwent 3DE (Philips iE33) and regadenoson stress CT. To obtain a reference for stenosis significance, coronaries were also fused with colour maps of stress myocardial perfusion. 3D displays were used to detect stress perfusion defect (SPD) and/or resting strain abnormality (RSA) in each territory. CTCA showed 56 normal arteries, stenosis 50% in 8 arteries. Of the 81 coronary territories, SPDs were noted in 20 and RSAs in 29. Of the 59 arteries with no stenosis >50% and no SPDs, considered as normal, 12 (20%) had RSAs. Conversely, with stenosis >50% and SPDs (haemodynamically significant), RSAs were considerably more frequent (5/6 = 83%). Overall, resting strain and stress perfusion findings were concordant in 64/81 arteries (79% agreement).Conclusions: Fusion of CTCA and 3DE-derived data allows direct visualization of each coronary artery and strain in its territory. In this feasibility study, resting strain showed good agreement with stress perfusion, indicating that it may be potentially used to assess haemodynamic impact of coronary stenosis, as an alternative to stress testing that entails additional radiation exposure

    Factors Associated with the Use of Drug-Eluting Stents in Patients Presenting with Acute ST-Segment Elevation Myocardial Infarction

    No full text
    Background. Drug-eluting stents (DES) have proven clinical superiority to bare-metal stents (BMS) for the treatment of patients with ST-segment elevation myocardial infarction (STEMI). Decision to implant BMS or DES is dependent on the patient’s ability to take dual antiplatelet therapy. This study investigated factors associated with DES placement in STEMI patients. Methods. Retrospective analysis was performed on 193 patients who presented with STEMI and were treated with percutaneous coronary intervention at an urban, tertiary care hospital. Independent factors associated with choice of stent type were determined using stepwise multivariate logistic regression. Odds ratio (OR) was used to evaluate factors significantly associated with DES and BMS. Results. 128 received at least one DES, while 65 received BMS. BMS use was more likely in the setting of illicit drug or alcohol abuse ([OR] 0.15, 95% CI 0.05–0.48, p≤0.01), cardiogenic shock (OR 0.26, 95% CI 0.10–0.73, p=0.01), and larger stent diameter (OR 0.28, 95% CI 0.11–0.68, p≤0.01). Conclusions. In this analysis, BMS implantation was associated with illicit drug or alcohol abuse and presence of cardiogenic shock. This study did not confirm previous observations that non-White race, insurance, or income predicts BMS use

    Fusion of Three-Dimensional Echocardiographic Regional Myocardial Strain with Cardiac Computed Tomography for Noninvasive Evaluation of the Hemodynamic Impact of Coronary Stenosis in Patients with Chest Pain

    No full text
    International audienceBackground: Combined evaluation of coronary stenosis and the extent of ischemia is essential in patients with chest pain. Intermediate-grade stenosis on computed tomographic coronary angiography (CTCA) frequently triggers downstream nuclear stress testing. Alternative approaches without stress and/or radiation may have important implications. Myocardial strain measured from echocardiographic images can be used to detect subclinical dysfunction. The authors recently tested the feasibility of fusion of three-dimensional (3D) echocardiography-derived regional resting longitudinal strain with coronary arteries from CTCA to determine the hemodynamic significance of stenosis. The aim of the present study was to validate this approach against accepted reference techniques.Methods: Seventy-eight patients with chest pain referred for CTCA who also underwent 3D echocardiography and regadenoson stress computed tomography were prospectively studied. Left ventricular longitudinal strain data (TomTec) were used to generate fused 3D displays and detect resting strain abnormalities (RSAs) in each coronary territory. Computed tomographic coronary angiographic images were interpreted for the presence and severity of stenosis. Fused 3D displays of subendocardial x-ray attenuation were created to detect stress perfusion defects (SPDs). In patients with stenosis >25% in at least one artery, fractional flow reserve was quantified (HeartFlow). RSA as a marker of significant stenosis was validated against two different combined references: stenosis >50% on CTCA and SPDs seen in the same territory (reference standard A) and fractional flow reserve 50% and no SPDs, considered as normal, 19 (19%) had RSAs. Conversely, with stenosis >50% and SPDs, RSAs were considerably more frequent (17 of 24 [71%]). The sensitivity, specificity, and accuracy of RSA were 0.71, 0.81, and 0.79, respectively, against reference standard A and 0.83, 0.81, and 0.82 against reference standard B.Conclusions: Fusion of CTCA and 3D echocardiography-derived resting myocardial strain provides combined displays, which may be useful in determination of the hemodynamic or functional impact of coronary abnormalities, without additional ionizing radiation or stress testing

    Impact of Implantable Transvenous Device Lead Location on Severity of Tricuspid Regurgitation

    No full text
    BackgroundImplantable device leads can cause tricuspid regurgitation (TR) when they interfere with leaflet motion. The aim of this study was to determine whether lead-leaflet interference is associated with TR severity, independent of other causative factors of functional TR.MethodsA total of 100 patients who underwent transthoracic two-dimensional and three-dimensional (3D) echocardiography of the tricuspid valve before and after lead placement were studied. Lead position was classified on 3D echocardiography as leaflet-interfering or noninterfering. TR severity was estimated by vena contracta (VC) width. Logistic regression analysis was used to identify factors associated with postdevice TR, including predevice VC width, right ventricular end-diastolic and end-systolic areas, fractional area change, right atrial size, tricuspid annular diameter, TR gradient, device lead age, and presence or absence of lead interference. Odds ratios were used to describe the association with moderate (VC width ≥ 0.5 cm) or severe (VC width ≥ 0.7 cm) TR, separately, using bivariate and stepwise multivariate logistic regression analysis.ResultsForty-five of 100 patients showed device lead tricuspid valve leaflet interference. The septal leaflet was the most commonly affected (23 patients). On bivariate analysis, preimplantation VC width, right atrial size, tricuspid annular diameter, and lead-leaflet interference were significantly associated with postdevice TR. On multivariate analysis, preimplantation VC width and the presence of an interfering lead were independently associated with postdevice TR. Furthermore, the presence of an interfering lead was the only factor associated with TR worsening, increasing the likelihood of developing moderate or severe TR by 15- and 11-fold, respectively.ConclusionLead-leaflet interference as seen on 3D echocardiography is associated with TR after device lead placement, suggesting that 3D echocardiography should be used to assess for lead interference in patients with significant TR
    corecore