205 research outputs found

    Gapped spectrum in pair-superfluid bosons

    Get PDF
    We study the ground state of a bilayer system of dipolar bosons with dipoles oriented by an external field perpendicularly to the two parallel planes. By decreasing the interlayer distance, for a fixed value of the strength of the dipolar interaction, the system undergoes a quantum phase transition from an atomic to a pair superfluid. We investigate the excitation spectrum on both sides of this transition by using two microscopic approaches. Quantum Monte Carlo methods are employed to obtain the static structure factors and intermediate scattering functions in imaginary time. The dynamic response is calculated using both the correlated basis functions (CBF) method and the approximate inversion of the Laplace transform of the quantum Monte Carlo imaginary time data. In the atomic phase, both the density and spin excitations are gapless. However, in the pair-superfluid phase a gap opens in the excitation energy of the spin mode. For small separation between layers, the minimal spin excitation energy equals the binding energy of a dimer and is twice the gap value.Postprint (author's final draft

    miR-SEA: miRNA Seed Extension based Aligner Pipeline for NGS Expression Level Extraction

    Get PDF
    The advent of Next Generation Sequencing (NGS) technology has enabled a new major approach for micro RNAs (miRNAs) expression profiling through the so called RNA-Sequencing (RNA-Seq). Different tools have been developed in the last years in order to detect and quantify miRNAs, especially in pathological samples, starting from the big amount of data deriving from RNA sequencing. These tools, usually relying on general purpose alignment algorithms, are however characterized by different sensitivity and accuracy levels and in the most of the cases provide not overlapping predictions. To overcome these limitations we propose a novel pipeline for miRNAs detection and quantification in RNA-Seq sample, miRNA Seed Extension Aligner (miR-SEA), based on an experimental evidence concerning miRNAs structure. The proposed pipeline was tested on three Colorectal Cancer (CRC) RNA-Seq samples and the obtained results compared with those provided by two well-known miRNAs detection tools showing good ability in performing detection and quantification more adherent to miRNAs structure

    Rehabilitation strategies for low anterior resection syndrome. A systematic review

    Get PDF
    OBJECTIVE: To summarize the evidence in the literature about rehabilitative treatments that reduce low anterior resection syndrome (LARS) symptoms in patients who underwent surgery for colorectal cancer. METHODS: We have search in PubMed, Cochrane Central Register of Controlled Trials, Cumulative Index of Nursing and Allied Health and Scopus databases. Studies selected were limited to those including only patient undergone low rectal resection with sphincter preservation and with pre-post assessment with a LARS score. Five articles fit the criteria. RESULTS: The percutaneous tibial nerve stimulation demonstrated moderate results and sacral nerve stimulation was found to be the best treatment with greater symptom improvement. Only one study considered sexual and urinary problems in the outcomes assessment. CONCLUSIONS: In clinical practice patients should evaluate with the LARS and other score for evaluation of urinary and sexual problems. Future research must be implemented with higher quality studies to identify the least invasive and most effective treatment/s

    Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform

    Get PDF
    In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8V, 2ms, 1Hz) and biphasic (+4V, 1ms and -4V, 1ms; 1Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration

    The neuronal protein Neuroligin 1 promotes colorectal cancer progression by modulating the APC/β-catenin pathway

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) remains largely incurable when diagnosed at the metastatic stage. Despite some advances in precision medicine for this disease in recent years, new molecular targets, as well as prognostic/predictive markers, are highly needed. Neuroligin 1 (NLGN1) is a transmembrane protein that interacts at the synapse with the tumor suppressor adenomatous polyposis Coli (APC), which is heavily involved in the pathogenesis of CRC and is a key player in the WNT/β-catenin pathway. METHODS: After performing expression studies of NLGN1 on human CRC samples, in this paper we used in vitro and in vivo approaches to study CRC cells extravasation and metastasis formation capabilities. At the molecular level, the functional link between APC and NLGN1 in the cancer context was studied. RESULTS: Here we show that NLGN1 is expressed in human colorectal tumors, including clusters of aggressive migrating (budding) single tumor cells and vascular emboli. We found that NLGN1 promotes CRC cells crossing of an endothelial monolayer (i.e. Trans-Endothelial Migration or TEM) in vitro, as well as cell extravasation/lung invasion and differential organ metastatization in two mouse models. Mechanistically, NLGN1 promotes APC localization to the cell membrane and co-immunoprecipitates with some isoforms of this protein stimulates β-catenin translocation to the nucleus, upregulates mesenchymal markers and WNT target genes and induces an “EMT phenotype” in CRC cell lines CONCLUSIONS: In conclusion, we have uncovered a novel modulator of CRC aggressiveness which impacts on a critical pathogenetic pathway of this disease, and may represent a novel therapeutic target, with the added benefit of carrying over substantial knowledge from the neurobiology field. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13046-022-02465-4
    • …
    corecore